Article Text

162 Simultaneous measurement of calcium transients and electrical activity in murine cardiac tissue – a novel system for the study of cardiac arrhythmia
  1. Alastair Yeoh1,
  2. Malcolm Finlay2,
  3. Naomi Anderson3,
  4. Stephen Harmer3,
  5. Andrew Tinker3
  1. 1University College London
  2. 2Barts Health NHS Trust and QMUL
  3. 3QMUL


Introduction Cardiac arrhythmia is a major source of morbidity and mortality. More effective diagnosis and treatment requires a deeper understanding of the underlying pathophysiology of arrhythmia. Aberrant calcium handling is implicated in arrhythmogenesis. This study describes the development of a novel system to simultaneously measure calcium and electrophysiology at the tissue level. Existing research primarily employs single cell or whole heart models, but there is a translational gap between these levels of study which this model is intended to bridge.

Abstract 162 Figure 1

Calcium transients in left atrial murine tissue under electrical stimulation. Changes in fluorescence coloured green and overlaid over base grayscale image

Methods A combined calcium fluorescence and solid-state electrical recording system was set up on an inverted microscope. Samples of murine tissue were loaded with a fluorescent calcium indicator dye (Fluo-4 AM). Intracellular calcium transients (elicited by electrical stimulation via external electrodes) were recorded by a CMOS digital camera, which measured emission light from samples excited with a narrow wavelength LED. The validity of this calcium imaging system was assessed by measuring the effects of decreased cycle length and pharmacological agents on calcium transients. Electrical and fluorescence data were then obtained simultaneously. Electrical data were recorded by contact electrodes in a multi-electrode array.

Results Tissue was successfully loaded with fluorescent dye and calcium transients (observed as increases in green fluorescence) elicited by electrical stimulation were recorded. Calcium transient height and duration decreased by 19% (p < 0.001) and 16 ms (95% CI 13–20) respectively when coupling intervals were reduced from 400 ms to 200 ms (n = 5). Isoprenaline 100 nm reduced calcium transient length by 10 ms (95% CI 4.8–16) (n = 5). Increasing concentrations of nifedipine showed a dose-dependent decrease in calcium transient size (n = 1). Calcium fluorescence transients were successfully measured in tandem with electrical activity.

Conclusion The current study describes the successful development of a calcium fluorescence imaging system and its integration into a multi-electrode array recording system. This experimental paradigm provides a novel multi-parametric tool for the study of arrhythmia in cardiac tissue.

  • Arrhythmia
  • Calcium
  • Tissue

Statistics from

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.