THE RIGHT PÆRCORDIAL LEAD

BY

HARRY VESELL AND BENJAMIN SHORR.*

From the Cardiological Laboratory, Beth Israel Hospital, New York City

Received January 15, 1948

Recent studies in clinical electrocardiography have indicated the desirability of taking multiple pœrcordial leads as a general routine practice. In their secondary supplementary report (1943) the Committee of the American Heart Association for the Standardization of Pœrcordial Leads stated that they believed that three is the least number of pœrcordial leads that can be regarded as satisfactory for general purposes. They suggested that those who wished to reduce the number of such leads to a minimum take leads from the C1, C3, and C5 positions. All were urged to take additional leads whenever possible. Though a right pœrcordial lead, C1, is recommended for general use, sufficient data have not yet been obtained on this lead either in regard to the range of normal or concerning its various abnormalities. Furthermore there is no agreement as to what is the best distal electrode for general use, a matter of considerable practical importance. The Wilson central terminal electrode, the right arm, the left leg, and the right scapula has each been preferred by different investigators.

In an attempt to gain further information on the right pœrcordial lead C1 and to assess its value for general use we (1) have reviewed previous reports in which such a lead was employed; (2) have taken a series of electrocardiograms including this lead on patients without heart disease to determine the range of normal variations; and (3) have also noted characteristic alterations in CF1 in certain cardiac conditions particularly posterior wall infarction, in which the use of this lead may be helpful.

Kossman and Johnson in 1935 reported on the normal variations in multiple pœrcordial leads. Their subjects were 30 medical students. They used the central terminal distal electrode and the right pœrcoral † position. With this lead V1 they found: no Q wave; R, 1-0 to 9-6 mm.; S, 3-4 to 24 mm.; T from –4-0 to +5-6 mm. and RS (intrinsic inflection) 6-6 to 26-8 mm. An electro-negative T wave was found in 3 out of the 30 cases in V1.

Wood and Seltzer (1939) examined the right pœrcoral lead using both the right arm and the left leg as sites for distal electrodes. In regard to the QRS complex they found S dominant in 75 per cent with the use of the right arm and 95 per cent when the proximal electrode was paired with the left leg. When the right arm was used the T wave remained upright, but when the left leg was used the T wave often became inverted. Thus in CF1, T was inverted in 65 per cent of normal children and 56 per cent of normal adults. With progressive enlargement of the left ventricle they found the incidence of negative T waves fell from 58 per cent to nil in grade III enlargement. In other words if there was significant enlargement of the left ventricle T was upright. Heart displaced by a high diaphragm to give left axis deviation in the standard leads did not act in the same way. Of twelve normal pregnant women with left axis deviation in the limb leads, ten had inverted T waves and two diphasic T waves in CF1. These authors concluded that in the right pœrcoral lead (CF1) one has a means of distinguishing left ventricular enlargement from displacement of the heart due to a high diaphragm. They indicated also that dominance of the right ventricle may be better ascertained in the right pœrcoral lead by the use of the left leg, rather than the right arm for the distal electrode. In the former an R taller than S was more certain of this interpretation. In cases of posterior myocardial infarction they stated they derived no help from the chest leads for the limb leads required no support and the chest leads had but little to give. Deeds and Barnes (1940), Shanno (1940), and Sigler (1944), have also described characteristics of lead CF1. These are summarized in the Table.

Wilson and his associates in 1944 published

† Right pœrcoral and right pœrcoral are used synonymously for the C1 position in this paper.

* Fellow in Cardiology.

158
multiple precordial lead electrocardiograms taken with the Wilson central terminal electrode in patients with myocardial infarction. The right pectoral lead V1 was included; and they observed that with this lead in cases of high lateral, plain posterior and postero-lateral infarcts R and T of V1 (and V2) were unusually prominent. This was not so in postero-inferior infarction. In an article in 1946 he and his associates noted in the single case of high postero-lateral myocardial infarction that T waves became taller in leads from the right side of the precordium.

The following is an analysis of the normal variations of the precordial electrocardiogram taken in the right pectoral position CF1. The subjects were 265 adults. There were two groups. In the first, all tracings were taken with the patient in the sitting position. This group consisted of 200 working men between the ages of 30 and 68 years, and only 11 were in the seventh decade. The majority were labourers; all were ambulant. No clinical evidence of heart disease was found in an ordinary history and physical examination and the routine four lead cardiogram (standard limb leads I, II, III, and CF1) was normal by usual criteria.* In many a teleradiogram was taken and was normal. In the second group the cardiogram was taken with the patient in the recumbent position. The subjects were 65 men and women. They were patients in the hospital or office patients in private practice; their ages were from 20 to 58 years. As in the first group the heart was considered to be normal after an ordinary history, physical examination and four lead cardiogram. In the majority a cardiac fluoroscopy was done and was normal. In some the CF1 lead was taken in both the recumbent and sitting position.

The cardiograph used was a string galvanometer, either the Cambridge mobile unit or Cambridge splintrol. The electrodes were the conventional ones, 3·5 × 6 cm., of german silver. A circular electrode 3 cm. in diameter was often used for the precordial leads and was kept in place by an elastic rubber belt. The chest electrode was placed in the fourth intercostal space at the right margin of the sternum, and the distal electrode just above the left ankle. A suitable electrode paste was employed. Standardization of the string, 1 cm. for 1 mv., was made and recorded with each lead. Measurements recorded were usually the average of several deflections or segments. Frequently a magnifying lens was used.

In view of the fact that the normal variations in CF1 revealed little or no difference in the two groups, they were considered as one group of 265 cases to include males and females, and sitting and recumbent positions. P ranged from −2·8 to +0·8 mm.; 88 per cent were negative, 9 per cent diphasic, and only 3 per cent positive; the average negative P was −1·3 mm.; the average positive T was +0·5 mm. Q, interpreted to mean an initial negative QRS deflection followed by a positive, R, deflection, was not observed in any of the 265. In 13 (5 per cent) there was (see Fig. 3) an absent R wave (i.e. monophasic negative QRS wave). In several other instances where the R wave was very small, about 0·2 mm., there were occasional complexes in the same tracings in which no R was visible also forming a monophasic negative QRS (S) complex. This monophasic negative wave, S, ranged from −4·5 to −17·0 mm. with an average of −10·8 mm. R ranged in amplitude from 0·2 to 7·4 mm. The average was 2 mm. Occasionally there was some slurring of R; this was usually in small deflections and was slight. S, ranged in amplitude from −2·0 to −25·0 mm. with an average of −13·2 mm. There was infrequent slurring and this was usually with waves of low voltage and was only slight. R1, was

* Criteria Committee of the New York Heart Association (1939), New York.
noted 46 times and ranged in amplitude from 1·0 to 7·5 mm. It was frequently slurred. QRS duration was the same as in CF2 or in the limb leads; no noticeable difference was seen. RS–T segment was often elevated, up to 1·8 mm.; RS–T depression was not seen. T ranged from −4·6 to +4·2 mm.; it was negative in the majority of tracings, 183 of the 265, or 69 per cent: 46 were diphasic, +−−; most of these were preponderantly negative. There were only 34 of the 265 (13 per cent) in which T was positive. Only 3 of the 37 females (8 per cent) had a positive T. In these three the amplitude of T was +4·0, +2·2 and +1·6 mm. with an angle alpha of +55°, +74° and +20°. In the whole series of 265 there were only 5 with T of +3 mm. or more; the average of the positive T waves was 1·8 mm.

In 15 cases in which T was negative with the patient in the sitting position a tracing was also taken, at the same time, with the patient in the recumbent position. In all 15 the T remained negative with little variation in depth. In 4 patients (2 male and 2 female) with a positive T in CF1 in the recumbent position the tracing was also taken in the sitting position. In the latter position the T remained the same in two and in the other two was slightly reduced, from 1·2 to 1·0 mm. and from 1·6 to 1·2 mm.

The relationship of deviation of the electrical axis of QRS to negative T waves in CF1 was examined. Axis deviation of QRS was expressed by angle alpha measured on a Dieulaife chart. In the 265 cases angle alpha ranged from −35° to +115°. No correlation of T wave negativity with deviation of the electrical axis of QRS was noted, positive and negative waves were observed almost as frequently in the range of 0° to −35° as in that of +70° to +115°.

Tracings in which a Q wave was present in limb lead III were examined; there were 123. No correlation was noted with respect to T in CF1 in that both negative and positive T waves were observed in this group. There were 11 of the series of 265 in which the Q III was prominent, 25 per cent. of the largest R in the three limb leads, with no S III, and without right axis deviation. Here also both negative and positive T waves were noted in CF1. In five, T in CF1 was negative, in five diphasic, +−, and in one it was positive. Thus in normal subjects a negative T in CF1 may occur with a prominent Q III. This is of significance in the light of the T wave findings with posterior wall infarction described later.

The effect of axis deviation on the RS deflection was the following: in 51 cases the angle alpha was between 0 and −35°. R averaged 1·4 mm. and S averaged 8·0 mm.; the relationship of R to S varied considerably in this group, from 1 to 2 to 1 to 28, with the exception of one case in which R was larger than S and R : S was as 1 to 0·4. In the group (24) with angle alpha of +80° to +115° the average for R was 1·76 mm. and for S 1·20 mm. the ratio R to S ratio ranged from 1 : 2 to 1 : 18. Thus for the whole group of 265 normals, in the axis range most to the right (clockwise), R averaged 25 per cent larger and S 50 per cent deeper than in the axis range most to the left (counter-clockwise). There was only one tracing in the whole series of 265 where R was larger than S, R = 3·2, S = −1·5 mm. and angle alpha −17°.

There was some correlation between R and S in CF1 and CF4. It has been pointed out that in normals R increases in amplitude as one goes from CF1 to CF4 or CF5 and that S decreases. This was generally found to be so and R was larger in CF4 than in CF1 in all but 5 of the 265 cases; usually the difference in amplitude was considerable. In the 5 exceptions where R in CF1 was larger it was 4·0, 4·8, 3·9, 4·8, and 4·7 mm., while R IV was 2·0, 3·0, 2·5, 3·6, and 3·0 mm. with angle alpha of +55°, +68°, +50°, +77°, +75° respectively. S was not infrequently larger in CF4 than in CF1.

No correlation was noted between negative T waves in CF1 and R, and amplitude of T in CF4 except that T in the latter was always positive while T in CF1 was negative in 69 per cent.

Fifteen cases with the cardiographic pattern of left ventricular strain were examined. The pattern of left ventricular strain consisted of a tall R I, deep S III, depressed RS–T I (often RS–T II) and frequently inversion of T I and occasionally of T II. In all 15, T was upright in CF1 except for one in which the T was diphasic, −4 and +1·0 mm. The average for T was +2·2 mm. These findings are largely in accord with those of Wood and Seltzer who found T wave negativity in CF1 to be reduced in left ventricular enlargement and absent when the enlargement was marked. In the cases with the cardiographic pattern of left ventricular strain, enlargement of the left ventricle was practically always present. In this group R tended to be smaller than in normals; the average was 0·97 mm. compared with 2·0 mm. for the series of normals; in seven of the fifteen, R = 0 and R1 was present three times. S in this group tended to be deeper than in the normal; the average was 18·4 mm. compared with 13·2 mm. for the normals.

CF1 in Posterior Wall Infarction

A white woman, 64 years of age, for several years a private patient of one of the authors, was examined at his office on April 17, 1941. Her medical condition was essential hypertension and chronic osteo-
arthritic involving the joints of the arms, legs, feet, and spine. There was no chest pain related to
effort, no mid-chest pain and no undue shortness
of breath. Heart sounds normal; blood pressure, 168/110; lungs clear; liver not palpable, and no
œdema of the lower extremities. Fluoroscopy
revealed the heart to be of normal size, shape, and
position; the thoracic aorta was somewhat tortuous.
A cardiogram, taken with the patient recumbent,
showed some left axis deviation; angle alpha was
\(-15^\circ\). The tracing was within normal variations.
The T waves in leads I, II, and IV were upright, 3-4,
2-0, and 5-4 mm. respectively. The RS-T segment
was elevated, 0-5 mm. in lead I, and depressed 0-4 mm.
in lead III. In lead CF\(_1\), P was \(-0\cdot8\) mm.; R, 0-4
to 0-8 mm.; S, 6-5 mm.; RS-T, elevated 0-2 mm.;
and T inverted, \(-0\cdot5\) to \(-0\cdot8\) mm. (Fig. 1).
Four days later (April 21, 1941) while at home she sud-
denly developed severe prolonged substernal pain
with the clinical picture of acute myocardial
infarction. The cardiogram taken that day (Fig. 1)
showed changes from the one taken four days before.
RS-T in lead II became slightly elevated, with
shouldering as it continued into the coved and
inverted T wave. Lesser changes were present
in leads I and III. CF\(_1\) was not taken. Two days
later, April 23, the second day of the acute attack,
another cardiogram revealed progressive cardio-
graphic changes in leads II and III characteristic
of the pattern of recent posterior wall infarction.
In CF\(_1\), T, which 6 days before was inverted, was
now on the second day of the acute attack upright
and of moderate amplitude, 2-8 mm., moderately
tall for CF\(_1\). P remained unchanged while R be-
came taller, 2-4 mm. compared with 0-4 to 0-8 mm.
before the attack; S became slightly deeper, \(-8\cdot0\)
mm. compared to \(-6\cdot5\) mm.; RS-T which was
raised 0-2 mm. prior to the attack was now de-
pressed to 0-2 mm. below the isoelectric line. T
remained upright in tracings taken ten days, 59 days
and 136 days after the onset of the attack though
gradually decreasing in amplitude; 2-5, 1-5, and
0-8 mm. respectively (Fig. 1). In this last tracing
(136th day) T in lead II had become upright and
was 0-8 to 1-0 mm. in amplitude.

Fourteen months later T in CF\(_1\) again became
inverted, 1-6 mm., R reduced to 0-0 to 0-2 mm., and
RS-T isoelectric. The standard limb leads were
similar to those taken before the attack with the
exception of the presence of a small Q in lead II,
0-5 to 1-0 mm.; R I was slightly taller, R III corre-
spondingly smaller; and T IV 2-5 mm. smaller. A
cardiogram five years later (October 1947) revealed
little change. A large Q wave was present in the
augmented unipolar left leg lead.

Cardiograms including CF\(_1\) were taken on another
patient before and after an attack of acute myocardial
infarction (Fig. 2). Leads II and III after the
attack were characteristic of the pattern of posterior
ewall infarction. In lead CF\(_1\), T which was negative
before the attack became positive after the attack; R
became taller.

These findings indicated that with acute posterior
wall infarction certain changes occurred in lead CF\(_1\).
The changes in the T wave in this lead were striking
and it was thought they might be expressive of the
specific cardiac lesion and helpful in diagnosis.
Accordingly, electrocardiograms in cases with the
clinical picture of recent myocardial infarction and
with the electrocardiogram in the limb leads char-
acteristic of the pattern of posterior wall infarction
were examined. All had a prominent Q II and Q III
with inverted T II and T III; none had right axis
deviation. There were 35 cases; all were patients
in the hospital; 31 males and 4 females; ages
ranged from 41 to 78 years. The measurements in
lead CF\(_1\) were: P, \(-0\cdot3\) to \(-2\cdot0\) mm.; 3 were
\(+\); there were no positive P waves and none of
unaltered or abnormal configuration. Q waves
were not present. R, 0-5 to 9-0 mm.; no absent R; the
average was 3-9 mm. and taller than in the series
of normals where the average was 2-0 mm. S, 0-0 to
\(-19\cdot2\) mm.; average \(-8\cdot2\) mm. smaller than in the
normal series where the average was \(-13\cdot2\) mm.
R\(^+\) was present twice; each 2-0 mm. QRS duration
appeared unaltered. RS-T was depressed in 6;
0-2, 0-8, 1-0, 1-0, 1-5 and 1-5 mm. below the isoelec-
tric base line; in two, J was the lowest point of the
segment and the ascending limb of the T wave
gradually rose from it. In nine, RS-T was elevated
0-2 to 1-8 mm. T was positive in all 35 cases and
the range was from 1-0 to 9-0 mm. with an average
of 3-1 mm. T was generally taller than in normals
where the average positive T was 1-8 mm. and in
only 5 of the 265 normals was T 3 mm. or taller.
Negative T waves were not observed. The
configuration and duration of the T did not appear
abnormal.

Observations were not made on the duration of
these changes in CF\(_1\) in the 35 patients after their
dischARGE from the hospital. However, in the first
case described above the T wave changes were
noted to last at least 4 months. In a cardiogram
14 months after the attack the T wave was again
negative.

Thus it appears that lead CF\(_1\) reflects changes in
the posterior wall of the heart, exhibiting character-
istic alterations with infarction of this area. The
Cardiographic changes are of opposite sense to those
observed in the unipolar left leg lead in this con-
dition, and may be contributed at least in part by
the left leg component. R became taller and S
RS-T often was depressed below the base line. This did not occur in normals. The most striking alteration was in the T wave which was positive in all such cases though in the normal T was positive in only 12 per cent and even less in females. This T wave alteration in CF1 could be

Fig. 1.—Cardiograms of a patient who had acute myocardial infarction on April 21, 1941. Serial changes in the limb leads II and III of subsequent tracings conformed to the cardiographic pattern of posterior wall infarction. The cardiogram on the day of the attack, April 21, 1941, did not include CF1. In CF1, four days before the attack T was inverted, R small; two days after the attack, April 23, 1941, T was upright 2-8 mm.; gradually becoming smaller in the tracings on the tenth, fifty-ninth, and one hundred and thirty-sixth day after the attack. R was taller after the attack.
THE RIGHT PRÆCordial LEAD

FIG. 2.—Cardiograms (A) before and (B) after attack of acute myocardial infarction. Serial changes in limb lead II and III and CF₄ conform to the cardiographic pattern of posterior wall infarction. In A lead CF₄, R is inverted; in B lead CF₄, R is upright, 3.8 mm., and T is upright, 4 mm.

FIG. 3.—Cardiogram showing absent R in CF₁; also inversion of T. In 15 cases in the series without heart disease R = O in CF₁, frequently with inversion of the T in this lead.

SUMMARY AND CONCLUSION

Data on the right præcordial lead CF₁ have been reviewed. The characteristics of CF₁ in a group of 265 patients without heart disease have been described.

Variations of the T wave, in particular, in CF₁ are described in relation to changes in position of the patient, electrical axis of QRS, presence of a prominent Q III, and in left ventricular strain.

of use in the diagnosis of recent posterior myocardial infarction. It may be particularly helpful where changes in the limb leads especially lead II, are equivocal or absent and also in the evaluation of Q III. A negative T wave in CF₁, which occurs in about 70 per cent of normal adult electrocardiograms, would, from the above, be important evidence against the presence of recent infarction of the posterior wall of the heart.
In two patients, CF₁ was taken before and after the occurrence of a posterior myocardial infarction and revealed the development of characteristic changes. These characteristic changes in CF₁ were found in each one of a series of 35 cases of recent myocardial infarction of the posterior wall. The use of lead CF₁ in the diagnosis of posterior wall infarction is discussed.

Usefulness of CF₁ has been indicated in (1) locating the side of bundle branch block, with CF₄ or CF₅ (Wilson); (2) evaluation of left ventricular enlargement, particularly from displacement by the diaphragm; (3) possibly of right ventricular enlargement (Wood and Seltzer), and (4) in posterior wall infarction. It has also been used for better recording of auricular activity and by Ellis and Brown (1946) as an aid in the diagnosis of tricuspid insufficiency.

The information obtained from a right precordial lead C₁, and in particular CF₁, described above, indicate it to be of sufficient value to recommend its regular use with other precordial leads in routine electrocardiography for general purposes.

REFERENCES

THE RIGHT PRÆCordial LEAD

Harry Vesell and Benjamin Shorr

Birmingham Heart J 1948 10: 158-164
doi: 10.1136/hrt.10.3.158

Updated information and services can be found at:
http://heart.bmj.com/content/10/3/158.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/