ORIGINAL ARTICLE

β-Adrenergic blockade combined with subcutaneous B-type natriuretic peptide: a promising approach to reduce ventricular arrhythmia in heart failure?

Jérôme Thireau,1 Sarah Karam,1 Stéphanie Roberge,1 Julien Roussel,1 Franck Aimond,1 Cécile Cassan,1 Arnaud Gaëc,2 Dominique Babuty,3 Jean-Yves Le Guennec,1 Alain Lacampagne,1 Jérémy Fauconnier,1 Sylvain Richard1

ABSTRACT

Aims Clinical studies failed to prove convincingly efficiency of intravenous infusion of nesiritide during heart failure and evidence suggested a pro-adrenergic action of B-type natriuretic peptide (BNP). However, subcutaneous BNP therapy was recently proposed in heart failure, thus raising new perspectives over what was considered as a promising treatment. We tested the efficiency of a combination of oral β1-adrenergic receptor blocker metoprolol and subcutaneous BNP infusion in decompensated heart failure.

Methods and results The effects of metoprolol or/and BNP were studied on cardiac remodelling, excitation–contraction coupling and arrhythmias in an experimental mouse model of ischaemic heart failure following postmyocardial infarction. We determined the cellular and molecular mechanisms involved in anti-remodelling and antiarrhythmic actions. As major findings, the combination was more effective than metoprolol alone in reversing cardiac remodelling and preventing ventricular arrhythmia. The association of the two molecules improved cardiac function, reduced hypertrophy and fibrosis, and corrected the heart rate, sympatho-vagal balance (low frequencies/high frequencies) and ECG parameters (P to R wave interval (PR), QRS duration, QTc intervals). It also improved altered Ca2+ cycling by normalising Ca2+-handling protein levels (S100A1, SERCA2a, RyR2), and prevented pro-arrhythogenic Ca2+ waves derived from abnormal Ca2+ sparks in ventricular cardiomyocytes. Altogether these effects accounted for decreased occurrence of ventricular arrhythmias.

Conclusions Association of subcutaneous BNP and oral metoprolol appeared to be more effective than metoprolol alone. Breaking the deleterious loop linking BNP and sympathetic overdrive in heart failure could unmask the efficiency of BNP against deleterious damages in heart failure and bring a new potential approach against lethal arrhythmia during heart failure.

INTRODUCTION

A major source of preventable cardiac death in heart failure is the ventricular arrhythmia (VA).1 VA involves ventricular remodelling and alterations of Ca2+ homeostasis following chronic adrenergic overactivation.2 We showed that B-type natriuretic peptide (BNP) promotes Ca2+-dependent VA via a similar mechanism.1 The clinical advantages of the use of recombinant intravenous BNP nesiritide are also subject to debate despite its favourable haemodynamic effects.4 One explanation could be that intravenous BNP further compromises autonomic regulation in heart failure3–5 via a pro-adrenergic action unmasking its beneficial effects.3–7

Subcutaneous BNP administration has recently yielded promising results in systolic heart failure.9 We thus aimed to determine the effects of a combination of the selective β1-adrenergic blocker (BB) metoprolol associated with subcutaneous BNP infusion in a mouse model of decompensated heart failure. Until now, no study in human or animal had specifically tested this combination and investigated cellular and molecular mechanisms. This combination could associate the efficiency of the main antiarrhythmic in use, particularly in postmyocardial ischaemic heart failure with a reduced LV EF,10 and unmask the beneficial antiarrhythmic, antiapoptotic and antihypertrophic properties of BNP by abolishing the BNP-associated adrenergic effects.

We showed that the combination was more effective than metoprolol or BNP alone in preventing cardiac remodelling and VA, with better benefits on cardiac morphology, function and Ca2+ homeostasis.

MATERIALS AND METHODS

Please refer online supplement for methods which is available online.

Study design

Procedures conformed to European Parliament Directive 2010/63/EU and Council on the protection of animals were approved by our institutional animal research committee (CE-LR-0714). Seven-week-old male C57Bl/6 mice (Janvier, France) were randomly assigned to the following groups: (1) postmyocardial infarction (PMI); (2) PMI treated with BNP (BNP-PMI); (3) PMI treated with metoprolol (BB-PMI); (4) PMI treated with metoprolol and BNP (BB-BNP-PMI); and (5) sham-operated mice (Shams). For PMI, the coronary artery was ligated 1–2 mm beyond its emergence from the left atrium, under anaesthesia and cardiac monitoring (2% isoflurane/O2, Aerrane, Baxter). Buprenorphine (0.3 mg/mL) was injected for postoperative analgesia.1 Metoprolol (Sigma-Aldrich, 100 mg/kg/day) was administered in the drinking water. The mouse BNP (14-5-30A,
American Peptide, USA) was subcutaneously administered at 0.03 μg/kg/min for 14 days (Alzet-1002 osmotic pumps). Following in vivo investigations, heart was explanted after cervical dislocation for single-cell experiments. The time sequence of the protocol is shown in figure 1.

In vivo analysis
Telemetric ECGs were recorded (DSI, USA) and analysed in respect of the Lambeth conventions. Heart rate variability, PR, QRS, corrected QT (QTc) intervals, short term variability of QT (QTSTV) and spontaneous arrhythmias were assessed (EMKA, France). To test the contribution of long term anti-remodelling effect of treatments on arrhythmogenic susceptibility, the β-adrenergic catecholamine isoproterenol (2.5 mg/kg intraperitoneal) was injected during and 4 weeks after the treatment. The triggering of sustained ventricular tachycardia (SVT) was monitored. At the same time-points, systolic, diastolic and mean arterial blood pressure were measured with a tail-cuff and pulse transducer (ML125/M NIBP System, ADInstruments, UK) in triplicate in conscious mice.

LV mass, LV shortening fraction, end-diastolic and end-systolic LV dimensions were measured by echocardiography (Vivid7Pro, GE Medical Systems, USA). Survival throughout experimental protocol was followed (see online supplementary table S1 and S4).

Autopsy and heart excision
Autopsies were performed to verify pleural effusion and lungs congestion. The heart and lungs were excised and weighed, and the heart weight index determined (heart weight/body weight). Intersitial fibrosis was measured in 10 μm thick transverse sections of hearts in the peri-infarcted area (H&E and Sirius red staining). Results indicated the area of Sirius red-stained tissue (percentage of total area of myocardial tissue).

RNA extraction and RT-qPCR
Total RNA was extracted from LV tissue using TRlzol, and treated with DNase I at 37°C for 30 min. cDNA was synthesised using superscript II reverse transcriptase (Invitrogen, France). RT-qPCR was performed for myocardin-related transcription factor A (MRTF-A), serum response factor (SRF), Na+-Ca2+-exchanger (NCX1), sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) and Ca2+-binding protein S100a1 in duplicate (LightCycler, Roche, France) and normalised to GAPDH (eight mice/group).

Figure 1 Time sequence of experimental procedure.

Ca2+ handling and patch-clamp
Experiments were performed on freshly isolated LV myocytes. Cardiomyocytes were loaded with Indo-1AM (10 μM, Invitrogen, France) and field-stimulated at 1.0 Hz with 1 ms current pulses (IonOptix system, USA). Indo-1 fluorescence emitted at 405 (F405) and 480 nm (F480) were recorded to estimate intracellular Ca2+ level (F405 to F480 ratio) during a 30 s pacing period, followed by a 30 s rest period. Diastolic Ca2+ level, Ca2+ transient decay time (tau) and percentage of cells developing spontaneous Ca2+ waves were quantified during the rest period. Ca2+ sparks (frequency, amplitude and spatiotemporal characteristics) were recorded by following variations of fluorescence at 505 nm (ΔF) divided by initial fluorescence at 505 nm (F0) (ΔF/F0, Fluo-4-AM, 5 μM, 1.5 ms/line; LSM510 Zeiss confocal microscope, 63X water-immersion objective, NA: 1.2). Cell volume was estimated using Z-stack (x-y projection, front view) image acquisition. Electrophysiological profiles of cardiomyocytes were investigated by current-clamp (action potential (AP) and voltage-clamp approaches (I_Ca_L, I_K) using the patch-clamp technique.

Ca2+-handling proteins
LV were homogenised into lysis buffer (0.3% CHAPS, 1 μg/mL leupeptin, 1 μg/mL pepstatin and, in mM; HEPES 20, KCl 40, DTT 1, PMSF 1, EDTA 1, pH7.4) and centrifugated (6000×g, 5 min). After protein quantification (DC Protein Assay, Bio-Rad), total proteins (50 mg) were loaded on SDS-PAGE and transferred on nitrocellulose membrane (GE Healthcare). The membranes were blocked (Thermoscientific) and incubated with primary antibodies at 4°C overnight: SERCA2a (1:5000) (A010-20, Badrilla, UK), NCX1 (1:1000) (R3F1, Swant), ryanodine receptor RyR2 (1:1000) (Covalab, France) and PhosphoSer16-PLB (1:5000) (A010-30, Badrilla), phospholamban (1:20 000) (A010-14, Badrilla) and S100A1 (1:2500) (SP5355P, Acris antibodies, Germany). After incubation with secondary antibodies at 4°C overnight: SERCA2a (1:5000) (A010-20, Badrilla, UK), NCX1 (1:1000) (R3F1, Swant), ryanodine receptor RyR2 (1:1000) (Covalab, France) and PhosphoSer2808-RyR2 (1:1000) (A010-12, Badrilla), and S100A1 (1:2500) (SP5355P, Acris antibodies, Germany). After incubation with secondary antibody 800 nm (1:30 000): antirabbit (SERCA2a, PhosphoPLB, RyR2, PhosphoRyR2, S100A1) or anti-mouse (NCX1, PLB, GAPDH), membranes were washed and scanned (Odyssey, LI-COR Biosciences). Results were expressed relative to GAPDH (1:60 000) (ab8245, Abcam).

STATISTICAL ANALYSIS
All data are reported as means±SD (mean±SE for patch-clamp experiments). Statistical analyses were performed using GraphPad Prism and Origin Softwares. One-way ANOVA for
Table 1 Morphological and histological parameters

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>PMI</th>
<th>BNP-PMI</th>
<th>BB-PMI</th>
<th>BB-BNP-PMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart weight index (mg/g)</td>
<td>4.9±0.2</td>
<td>5.9±0.3†</td>
<td>6.2±0.1†</td>
<td>5.5±0.1‡</td>
<td>5.3±1.1*‡,‡</td>
</tr>
<tr>
<td>Pleural effusion (%)</td>
<td>0</td>
<td>58†</td>
<td>57‡</td>
<td>69‡</td>
<td>33*,§</td>
</tr>
<tr>
<td>Lung congestion (%)</td>
<td>0</td>
<td>41†</td>
<td>42‡</td>
<td>69‡</td>
<td>33*,§</td>
</tr>
<tr>
<td>LV end-diastolic dimension (mm)</td>
<td>25.4±0.5</td>
<td>52.4±0.4†</td>
<td>47.1±0.3‡</td>
<td>42.1±0.5‡</td>
<td>39.9±0.41‡</td>
</tr>
<tr>
<td>LV shortening fraction (%)</td>
<td>58.9±1.3</td>
<td>17.4±1.1‡</td>
<td>17.5±0.8‡</td>
<td>24.6±0.6‡</td>
<td>29.6±0.9‡</td>
</tr>
<tr>
<td>Collagen (%)</td>
<td>0.1±0.0</td>
<td>5.2±1.8†</td>
<td>3.6±0.2†</td>
<td>4.6±1.9†</td>
<td>2.4±1.5†</td>
</tr>
<tr>
<td>Cell volume (10^{-5} mm³)</td>
<td>3.5±0.1</td>
<td>5.5±0.5†</td>
<td>4.8±0.4†</td>
<td>4.3±0.3*,§</td>
<td>3.7±0.4</td>
</tr>
</tbody>
</table>

Heart weight index. Percentage of animals exhibiting pleural effusion and lung congestion (15 mice/group). LV end-diastolic dimensions and shortening fraction (14 mice/group). Collagen content (percentage of the total area of myocardial tissue, 8 mice/group) and cell volume (n=30 cells, 3 mice/group). *,†,‡ p<0.05, p<0.01, p<0.001 versus Sham; §,|| p<0.05, p<0.01 versus PMI; ¶,# p<0.05, p<0.01 versus BB-PMI.

BB, β1-adrenergic blocker; BNP, B-type natriuretic peptide; PMI, postmyocardial infarction.

Table 2 ECG analysis

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>PMI</th>
<th>BNP-PMI</th>
<th>BB-PMI</th>
<th>BB-BNP-PMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>593±11</td>
<td>630±12*</td>
<td>665±10†</td>
<td>536±12*,</td>
<td></td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>17.4±1.1</td>
<td>32.8±1.4†</td>
<td>33.1±1.1‡</td>
<td>33.5±1.2†</td>
<td>28.2±0.9*,§,¶</td>
</tr>
<tr>
<td>QT interval (ms)</td>
<td>32.2±1.3</td>
<td>51.3±1.4‡</td>
<td>59.5±1.6†</td>
<td>46.4±3.21†</td>
<td>45.7±2.4‡</td>
</tr>
<tr>
<td>QTc (ms)</td>
<td>178±34</td>
<td>362±31†</td>
<td>454±45†</td>
<td>285±333‡</td>
<td>149±55§</td>
</tr>
<tr>
<td>Heart rate variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF (ms²)</td>
<td>0.052±0.005</td>
<td>0.012±0.009†</td>
<td>0.009±0.004†</td>
<td>0.028±0.005,§</td>
<td>0.041±0.004*,</td>
</tr>
<tr>
<td>HF (ms²)</td>
<td>0.032±0.005</td>
<td>0.028±0.009†</td>
<td>0.025±0.006</td>
<td>0.032±0.005</td>
<td>0.033±0.009</td>
</tr>
<tr>
<td>LF to HF</td>
<td>1.62±0.11</td>
<td>0.43±0.12†</td>
<td>0.36±0.28‡</td>
<td>0.87±0.27*,§</td>
<td>1.24±0.19*,</td>
</tr>
<tr>
<td>SDNN (ms)</td>
<td>14.9±2.4</td>
<td>9.1±1.4*</td>
<td>5.8±1.3†</td>
<td>13.5±2.1§</td>
<td>18.1±2.1</td>
</tr>
<tr>
<td>RMSSD (ms)</td>
<td>5.7±0.9</td>
<td>3.1±0.8*</td>
<td>3.5±1.1*</td>
<td>3.7±1.0*</td>
<td>3.6±1.1*</td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of VA</td>
<td>21.3±4.2</td>
<td>44.7±3.1†</td>
<td>56.2±2.7†</td>
<td>28.3±4.2§</td>
<td>16.6±2.4</td>
</tr>
<tr>
<td>SVT (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During treatment</td>
<td>8</td>
<td>50†</td>
<td>66†</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>After treatment</td>
<td>0</td>
<td>58†</td>
<td>58†</td>
<td>33§</td>
<td>68</td>
</tr>
</tbody>
</table>

BB+BNP improved heart rate variability and were more efficient than metoprolol alone to prevent variability of ventricular repolarisation and VA. Parameters estimated from 12 h nocturnal ECG: heart rate, QRS duration, corrected QT interval (QTc) and short term variability of QT (QTSTV). Heart rate variability analysis in the frequency- and time-domain with low frequencies (LF), high frequencies (HF) spectral power, LF to HF ratio, SD of all normal R-R intervals (SDNN) and square root of the mean square successive differences between successive normal R-R intervals (RMSSD). Number of spontaneous ventricular extrasystoles (VA) developed over 12 h ECG recording. Percentage of mice developing SVT following injection of isoproterenol (2.5 mg/kg intraperitoneal) during and assessed 4 weeks after treatment. *,†,‡ p<0.05, p<0.01, p<0.001 versus Sham; §,|| p<0.05, p<0.01 versus PMI; ¶# p<0.05 versus BB-PMI; n=15/group.

BB, β1-adrenergic blocker; BNP, B-type natriuretic peptide; PMI, postmyocardial infarction; SVT, sustained ventricular tachycardia; VA, ventricular arrhythmia.

Figure 2 Arrhythmic events. Typical sustained ventricular tachycardia and ventricular fibrillation in postmyocardial infarction mice during isoproterenol challenge (2.5 mg/kg intraperitoneal).

multiple comparisons was used, followed by a parametric t test with Bonferroni’s correction. Percentage data were analysed by a χ² test. A p value of 0.05 or less indicates a statistically significant difference.

RESULTS

BNP reduced fibrosis and metoprolol improved cardiac remodelling

MI mice exhibited heart failure with cardiac hypertrophy, increased LV end-diastolic dimensions, decreased LV shortening fraction and interstitial fibrosis (table 1; see online supplementary figure S1). The systolic, diastolic and mean arterial blood pressures were decreased (see online supplementary table S1). BNP did not improve morpho-functional remodelling after MI but reduced interstitial fibrosis (table 1, see online supplementary figure S1). In contrast, metoprolol reversed the increases of the heart weight index and LV end-diastolic dimensions in PMI, while pleural effusion and lung congestion worsened (table 1). Consistently, metoprolol reduced cell hypertrophy as confirmed by the quantification of MRTF-A and SRF mRNAs (see online supplementary table S2).

BB+BNP normalised morpho-functional parameters

The BB+BNP combination was far more effective than metoprolol on cardiac hypertrophy, pleural effusion, lung congestion and LV end-diastolic dimensions (table 1). The combination reduced fibrosis and hypertrophy more efficiently than BB (table 1, see online supplementary figure S1). BB and BB+BNP had no

Figure 3 Cellular electrophysiological profiles. Current clamp studies: (A) Representative action potentials were recorded from LV cardiomyocytes isolated from Sham, postmyocardial infarction (PMI) and B-type natriuretic peptide (BNP)-PMI mice. (B) Typical early afterdepolarisations obtained in BNP-PMI mice. Voltage clamp studies: Ionic currents in Sham (open square), PMI (filled square) and BNP-PMI mice (filled circle). (C) Means±SE current/voltage relationships of the total voltage-gated K⁺ currents (Ipeak), (D) transient outward K⁺ current (Ito,F), (E) Islow, (F) Ik1 and (G) Ica,L (n=13–22 cells). **p<0.01 versus Sham.
detrimental effect on the systolic blood pressure during treatment and conferred a persistent beneficial effect over time (see online supplementary table S1).

BB+BNP corrected rhythm disturbances better than monotherapy
PMI mice presented higher heart rate, and prolonged QRS and QTc intervals (table 2) when compared with Shams. The typical collapsed low frequencies to high frequencies ratio indicated that the sympathetic system was overactivated, as observed in heart failure. Moreover, the ventricular repolarisation instability expressed as the QTSTV was increased (table 2, see online supplementary figure S2). All these parameters are well-recognised prognostic markers for VA. PMI mice displayed a higher incidence of VA than Shams. BB and BB+BNP both normalised the heart rate and improved heart rate variability in PMI (table 2). The QTSTV and the number of VA were also diminished (table 2, see online supplementary figure S2). Similar results have been reported in heart failure patients under β-blockers. Overall, BB+BNP was more effective than BB in correcting the heart rate variability and QTSTV and in reducing VA (table 2).

Since catecholamines are a potent trigger of VA, mice were challenged with isoproterenol at two time-points. (1) During treatment, 33% PMI and 66% BNP-PMI mice developed SVT whereas Sham did not (table 2). BB and BB+BNP prevented SVT. (2) When all treatments were stopped, 58% of PMI developed SVT, and 33% triggered ventricular fibrillation (figure 2, table 2). In the BNP-PMI group, 60% of mice developed SVT, and 33% developed ventricular fibrillation followed by cardiac death (4/12, p<0.05, χ² test vs PMI). The BB+BNP therapy remained highly beneficial in successfully preventing SVT (8%) (χ² test, p<0.05, table 2).

BB+BNP normalised intracellular Ca²⁺ homeostasis
VA could originate from AP lengthening and/or disturbed Ca²⁺ handling. Whereas AP shape was altered in PMI and BNP-PMI, AP duration and underlying currents (Ca²⁺ and K⁺) were

Figure 4 Ca²⁺ transients. BB+B-type natriuretic peptide (BNP) decreased cellular susceptibility to arrhythmia by normalising Ca²⁺ homeostasis. Indo1-AM fluorescence ratio at 405 and 480 nm (F405 to F480) reflected intracellular Ca²⁺ level variations during and after electrical pacing in LV cardiomyocytes. Postmyocardial infarction (PMI) and BNP-PMI developed abnormal spontaneous activities during non-stimulated period. BB, β1-adrenergic blocker.
In PMI, Ca\(^{2+}\) transient was altered with smaller amplitude and BB-PMI and BB-BNP-PMI animals. Each sporadic elevation of cardiomyocytes from Sham, postmyocardial infarction (PMI), BNP-PMI, 505 nm (F505) during line scan acquisition in Fluo-4 AM-loaded lar Ca\(^{2+}\) waves (sarcomeres shortening and the triggering of spontaneous irregular Ca\(^{2+}\) waves). These changes accounted for, respectively, the decrease in frequency. BB, and higher diastolic Ca\(^{2+}\) levels than in Shams. Presented few Ca\(^{2+}\) sparks, PMI presented an increased sparks spontaneous activation of ryanodine receptors. Whereas Sham cells presented few Ca\(^{2+}\) sparks, PMI presented an increased sparks Ca\(^{2+}\) leakage from RyR2. Representative variations of lar Ca\(^{2+}\) level that could trigger afterdepolarisations.

Table 3 Intracellular Ca\(^{2+}\) signalling in LV cardiomyocytes, Ca\(^{2+}\) transients and cell shortening

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>PMI</th>
<th>BNP-PMI</th>
<th>BB-PMI</th>
<th>BB-BNP-PMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(^{2+}) transient (Indo1-AM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude (F405 to F480)</td>
<td>5.24±0.18</td>
<td>4.47±0.25*</td>
<td>4.12±0.09†</td>
<td>5.3±0.11§</td>
<td>5.81±0.16*,</td>
</tr>
<tr>
<td>t (ms)</td>
<td>294±21</td>
<td>371±15*</td>
<td>361±17*</td>
<td>312±18§</td>
<td>262±19</td>
</tr>
<tr>
<td>SR-Ca(^{2+}) content (F405 to F480)</td>
<td>9.3±0.4</td>
<td>7.2±0.1*</td>
<td>6.4±0.31§</td>
<td>8.6±0.3§</td>
<td>9.6±0.2§</td>
</tr>
<tr>
<td>Diastolic Ca(^{2+}) level (F405 to F480)</td>
<td>0.55±0.01</td>
<td>0.65±0.02†</td>
<td>0.71±0.01†</td>
<td>0.51±0.02</td>
<td></td>
</tr>
<tr>
<td>Sarcomere shortening (%)</td>
<td>9.65±0.32</td>
<td>7.21±0.35†</td>
<td>7.06±0.34†</td>
<td>9.16±0.31§</td>
<td>10.41±0.29</td>
</tr>
<tr>
<td>Arrhythmic cells (%)</td>
<td>7.1±5.4</td>
<td>72.3±14.4</td>
<td>62.9±9.7†</td>
<td>24.3±3.3*,</td>
<td></td>
</tr>
<tr>
<td>Ca(^{2+}) sparks (Fluo4-AM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (Events.100 μm/s)</td>
<td>1.05±0.05</td>
<td>5.12±0.23†</td>
<td>6.34±0.13§</td>
<td>1.84±0.14*,</td>
<td></td>
</tr>
<tr>
<td>Amplitude (ΔF/FO)</td>
<td>0.58±0.01</td>
<td>0.49±0.02*</td>
<td>0.41±0.01†</td>
<td>0.54±0.01§</td>
<td>0.61±0.01§,</td>
</tr>
<tr>
<td>FDHM (ms)</td>
<td>14.3±0.4</td>
<td>23.7±1.2†</td>
<td>34.3±2.1†</td>
<td>16.9±1.7*</td>
<td>11.1±1.1*§,</td>
</tr>
<tr>
<td>FWHM (ms)</td>
<td>1.34±0.02</td>
<td>1.67±0.05*</td>
<td>2.10±0.06†</td>
<td>1.50±0.05</td>
<td>1.59±0.04</td>
</tr>
</tbody>
</table>

BB+BNP decreased cellular susceptibility to arrhythmia by normalising Ca\(^{2+}\) homeostasis. Averaged Ca\(^{2+}\) transient amplitudes expressed as Indo1-AM fluorescence (F405/F480), averaged decay time constants (t) of Ca\(^{2+}\) transients, averaged sarcoplasmic reticulum (SR)-Ca\(^{2+}\) content following caffeine application, averaged diastolic Ca\(^{2+}\) levels, sarcomeres shortening (%) and percentage of cells exhibiting spontaneous irregular Ca\(^{2+}\) waves (n=50 cells, 5 mice/group). Ca\(^{2+}\) sparks. BB+BNP prevented Ca\(^{2+}\) leakage from RyR2. Averaged Ca\(^{2+}\) sparks frequencies detected by Fluo4-AM fluorescence. Ca\(^{2+}\) sparks amplitude (variation of fluorescence at 505 nm/initial fluorescence at 505 nm, ΔF/F0) averaged decay time constants (FDHM) at half maximum of Ca\(^{2+}\) sparks (n=60 cells, 6 mice/group). *

DISCUSSION

β-Blockers are commonly used as first-line treatment after MI and heart failure, with unquestionable benefits on mortality. Here, we conclude that a combination of the selective BB metoprolol with subcutaneous BNP is more effective to prevent cardiac remodelling than metoprolol alone in decompensated heart failure. We also provide novel insights into how the combination prevents Ca\(^{2+}\)-handling alterations and subsequent morbid arrhythmias (figure 6).
Higher benefits of BB+BNP on cardiac remodelling

Favourable effects of BNP have been reported in hypertension-induced heart failure, but they are still debated in postischaemic heart failure. We showed that subcutaneous BNP was beneficial when combined with metoprolol in ischaemic heart failure. Furthermore, the overall benefit was independent of heart rate and haemodynamic changes. In particular, no severe hypotension was observed. The combination clearly associated the anti-fibrotic effect of BNP and the anti-remodelling action of metoprolol that account for the increased propensity of BNP-PMI mice to develop catecholamines-induced VT, fibrillation and death. Such pro-arrhythmic effect was observed in patients in whom high doses of intravenous nesiritide induced a minor increase of VA (ventricular tachcardia (VT), couplets and triplets). However, in this study, the antiarrhythmic treatment of patients may have prevented the effect of parenteral vasoactive therapy on the occurrence of VAs. In addition, non-sustained VT was also reported during study drug infusion of nesiritide in three patients receiving a high dose of nesiritide (0.03 μg/kg/min) in acute decompensated heart failure vs subcutaneous 0.03 μg/kg/min for 15 days in established chronic heart failure) and of model.

The normalisation of the sympatho-vagal balance by the combination was a key mechanism contributing to its overall therapeutic effect. Metoprolol not only provided its well-known benefits, but it broke the deleterious loop linking BNP and sympathetic overdrive. Indeed, BNP promotes adrenergic signalling through two distinct pathways. BNP induces norepinephrine release from sympathetic cardiac neurons via protein kinase G-induced inhibition of PDE3-mediated Ca2+ hydrolysis, which is likely to offset its desirable effects. BNP also inhibits PDE3 through the activation of NPR-B, which is the predominant natriuretic peptide receptor in failing hearts. Moreover, whereas low doses of nesiritide have beneficial effect on autonomic nervous system, high doses of intravenous BNP could induce prolonged hypotension and activate the sympathetic system. Altogether, these effects could account for the increased propensity of BNP-PMI mice to develop catecholamines-induced VT, fibrillation and death.

Mechanisms of higher benefits of BB+BNP combination therapy

Alternations in Ca2+ homeostasis are responsible for excitation–contraction coupling defects and VA. Aberrant ryanodine receptor (RyR) opening in diastole, observed functionally as the abnormal occurrence of Ca2+ sparks, generates spontaneous irregular Ca2+ waves involved in the triggering of VASVT. Increase in Ca2+ sparks frequency could result from increased cytosolic Ca2+ level due to a blunted SERCA2a activity, associated with a modulation of the intrinsic properties of the RyR2 complex (see online
supplement). Sympathetic overdrive, leading to SR-Ca\(^{2+}\) leakage, may be involved since high diastolic Ca\(^{2+}\) levels could also participate in the triggering of afterdepolarisations. The combination effectively reduced SR-Ca\(^{2+}\) leakage, and improved SR-Ca\(^{2+}\) load and transient amplitude by normalising proteins alterations which accounted for the maintained cell contraction and the antiarrhythmic properties. Interestingly, the combination restored baseline levels of S100A1 and increased SR-Ca\(^{2+}\) content. Restoration of S100A1 expression, as a Ca\(^{2+}\)-dependent molecular inotrope regulating cardiac SR-Ca\(^{2+}\) cycling, was suggested to treat heart failure.\(^{2,7}\)

Clinical implication
The most important finding of this study is that association of oral metoprolol with subcutaneous BNP infusion is more effective than monotherapy with the β-blocker in reducing ventricular remodelling and VA following MI. The interest of combinations, elevating circulatory properties. Interestingly, the combination restored baseline levels of S100A1 and increased SR-Ca\(^{2+}\) content. Restoration of S100A1 expression, as a Ca\(^{2+}\)-dependent molecular inotrope regulating cardiac SR-Ca\(^{2+}\) cycling, was suggested to treat heart failure.\(^{2,7}\)

What is already known on this subject
Chronic B-type natriuretic peptide (BNP) administration alters excitation–contraction coupling (Ca\(^{2+}\) signalling) in mouse ventricular cardiomyocytes, which triggers ventricular arrhythmia through activation of the sympathetic system. However, chronic subcutaneous BNP improves cardiac function and avoids the severe hypotensive effect of BNP.

What this study adds
We determined the effects of a combination of the selective β1-adrenergic receptor blocker metoprolol associated with subcutaneous BNP infusion in a mouse model of decompensated heart failure. Until now, no study in humans or animals had specifically tested this combination and investigated both cellular and molecular mechanisms. We showed that metoprolol unmasks beneficial effects of BNP. The combination of the two molecules reduced the occurrence of both spontaneous and catecholamines-induced ventricular tachycardia in postischaemic heart failure.

REFERENCES

β-Adrenergic blockade combined with subcutaneous B-type natriuretic peptide: a promising approach to reduce ventricular arrhythmia in heart failure?

Jérôme Thireau, Sarah Karam, Stéphanie Roberge, Julien Roussel, Franck Aimon, Cécile Cassan, Arnaud Gac, Dominique Babuty, Jean-Yves Le Guennec, Alain Lacampagne, Jérémy Fauconnier and Sylvain Richard

Heart 2014 100: 833-841 originally published online March 25, 2014
doi: 10.1136/heartjnl-2013-305167

Updated information and services can be found at:
http://heart.bmj.com/content/100/11/833

These include:

Supplementary Material
Supplementary material can be found at:
http://heart.bmj.com/content/suppl/2014/03/25/heartjnl-2013-305167.DC1

References
This article cites 30 articles, 15 of which you can access for free at:
http://heart.bmj.com/content/100/11/833#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: cardiovascular system (8842)
- Editor's choice (228)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/