Abstract 2 Table 1 ARVC/D phenocopies identified by CMR			
	ARVC/D Phenocopies (n = 12, 9.6%)		
Patients	Ischaemic Heart Disease	Non-ischaemic Heart Disease	
Patient A	✓		
Patient B		Congenital absence of pericardium	
Patient C		Idiopathic dilated cardiomyopathy	
Patient D	✓		
Patient E		Left ventricular non-compaction	
Patient F		Arrhythmogenic left ventricular cardiomyopathy	
Patient G		Anomalous venous return	
Patient H	✓		
Patient I	✓		
Patient L		Atrial septal defect	
Patient M		Asymmetric pectus excavatum	
Patient N	✓		

ROLE OF CARDIAC MAGNETIC RESONANCE IN NON-TRAUMATIC OUT OF HOSPITAL CARDIAC ARREST SURVIVORS: A MULTI-CENTRE STUDY

^{1,2}A Baritussio, ²M Perazzolo Marra, ¹N Ahmed, ¹A Ghosh Dastidar, ¹J Rodrigues, ²A Zorzi, ²A Susana, ²D Corrado, ¹C Bucciarelli-Ducci. ¹Bristol Heart Institute, Bristol NIHR Cardiovascular Biomedical Research Unit (BRU), Bristol, UK; ²Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy

10.1136/heartinl-2015-307845.3

Background Non-traumatic out of hospital cardiac arrest (OHCA) is the leading cause of death in Europe and USA. Acute coronary syndromes represent the most common aetiology and in 2/3 of patients a culprit lesion can be identified on angiogram. Among patients with unobstructed coronaries, the differential diagnosis remains unclear. Cardiovascular Magnetic Resonance (CMR), with its superior tissue characterisation, can establish differential diagnosis over and above echocardiography.

Methods This retrospective observational study was performed in two tertiary centres on consecutive patients surviving OHCA referred for CMR (October 2009–January 2015). Coronary angiography and echocardiography were performed as part of the diagnostic work-up. A comprehensive CMR protocol (cine, late gadolinium enhancement, T2 weighted STIR imaging or adenosine perfusion) was performed within 6 weeks from index event.

Results We identified 140 patients (109 male, age 56.1 ± 15.7 years) surviving OHCA. 134 patients underwent coronary angiography, with evidence of coronary artery disease (CAD) in

71 (53%). Sixty-three (47%) showed unobstructed coronaries. Among patients with CAD, sixty (85%) had ischaemic cardiomyopathy on CMR. Among patients with unobstructed coronaries, CMR identified a normal scan in 17 (27%), ischaemic cardiomyopathy in 9 (14%), non-ischaemic cardiomyopathy in 27 (43%) (Figure 1), and non-specific findings in 10 (16%). Different underlying cardiomyopathies have been identified by CMR among patients with non-ischaemic cardiomyopathy, as shown in Table 1. Overall, the diagnostic pick-up rate of CMR was 91%.

Conclusion Cardiac MRI identified the underlying diagnosis in the large majority of patients, particularly in those with unobstructed coronaries (pick-up rate 84%), leading to a change in management in all. CMR has therefore a promising role in the clinical work-up of patients surviving OHCA.

CMR diagnosis Dilated cardiomyopathy		
Myocarditis	7	
Tako-Tsubo cardiomyopathy		
Mitral valve prolapse		
Hypertensive heart disease		
Cardiac amyloid		
Left ventricular non compaction		
Biventricular arrhythmogenic cardiomyopathy		
Heart failure with preserved ejection fraction		

4 EXTRACELLULAR VOLUME IN THE INFARCT ZONE IS ASSOCIATED WITH CLINICAL AND MRI MEASURES OF INFARCT SEVERITY IN SURVIVORS OF ACUTE STEMI

¹J Carberry*, ^{1,2}D Carrick, ³C Haig, ¹SM Rauhalammi, ¹N Ahmed, ^{1,2}I Mordi, ²M McEntegart, ¹M Petrie, ¹H Eteiba, ¹S Hood, ¹S Watkins, ¹M Lindsay, ¹A Davie, ²A Mahrous, ¹A Radjenovic, ³I Ford, ¹KG Oldroyd, ^{1,2}C Berry. ¹BHF Glasgow Cardiovascular Research Center, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; ²West of Scotland Heart and Lung Center, Golden Jubilee National Hospital, Dumbartonshire, UK; ³Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK

10.1136/heartjnl-2015-307845.4

Background The clinical significance of extracellular volume (ECV) expansion in infarcted myocardium post-STEMI is unknown. Myocardial ECV can be estimated by cardiac magnetic

Abstract 3 Figure 1 Unobstructed coronaries (A, B, C) in a patient with hypertrophic cardiomyopathy with patchy septal myocardial late enhancement (D).

A2 Heart 2015;**101**(Suppl 2):A1–A19