derived parameters of LA function (LA SV and LA EF) in predicting LV function.

Methods Twelve-patients underwent CMR at 3T (Achieva CV, Philips Healthcare, Best, The Netherlands) within 3 days following AMI. CMR protocol included: cines and late gadolinium enhancement (LGE) imaging (0.1 mmol/kg gadolinium DTPA). Indexed LAEDV (LAEDVI), end-systolic volume (LAESVI) and ejection fraction were computed by bi-plane method. Voxel FT for the LA in the long axis 4-chamber cines was analysed offline using commercially available software (cvi42 v5.1, Circle Cardiovascular Imaging Inc., Calgary, Canada).

Results Demographics and basic CMR parameters are mentioned in Table 1. Analysis time was longer for manual contouring and computation of LA EF and SV compared to 4-CH strain analysis (4 ± 2 min versus 2 ± 1.5 min, p = 0.01). On univariate analysis, LV EF was correlated to peak longitudinal strain (PLS) (p = 0.01) and peak radial strain (PRS) (p = 0.02). On multivariate regression analysis, PLS of LA was most strongly correlated to LV EF (R=0.68; p = 0.015). All other parameters did not achieve statistical significance.

Conclusion Peak left atrial longitudinal strain (PLS) is the only parameter of LA function, which independently correlates to LV ejection fraction. PLS of the LA is easily assessed on 4-chamber cines alone and takes less time to compute than the manually generated parameters of LA function.

Abstract 14 Table 1 Demographics and basic CMR values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>55.4 ± 11.2</td>
</tr>
<tr>
<td>Male</td>
<td>75%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>25%</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>42%</td>
</tr>
<tr>
<td>Smoker</td>
<td>50%</td>
</tr>
<tr>
<td>LV EF</td>
<td>48 ± 10</td>
</tr>
<tr>
<td>Infarct Volume (ml)</td>
<td>16.7 ± 11.9</td>
</tr>
</tbody>
</table>

Values expressed as n (%) or mean ± SD

Background Mitral annular plane systolic excursion (MAPSE) is known to have prognostic importance in patients with acute myocardial infarction (MI). In post-MI patients with MAPSE <8 mm, the combined mortality and hospitalisation incidence is 43.8%. Similarly, intra-myocardial haemorrhage (IMH) in the infarct-core is an independent marker of prognosis. We hypothesised that the MAPSE on 4-chamber cine-CMR is correlated to left ventricular ejection fraction (EF) and to the presence of IMH.

Methods Forty-four patients received CMR examination at 3T (Achieva CV, Philips Healthcare, Best, The Netherlands) within 3 days following acute MI. Cine, T2-weighted, T2*-imaging and late gadolinium enhancement (LGE) imaging were performed. Infarct and microvascular obstruction (MO) extent were measured from LGE images. The presence and extent of IMH was investigated by combined analysis of T2w and T2* sequences. MAPSE was computed (medial, lateral and average) using the 4-chamber cine (Figure 1).

Results Mean age of our studied population was 58.27 ± 11.41. CMR parameters were as follows: LVEF 48.2 ± 11.4%; infarct volume of 15.5 ± 12.2 ml and averaged MAPSE of 10.27 ± 2.1 mm. Controlling for risk factors, IMH was strongly negatively correlated to average MAPSE (r = -0.65; p < 0.001). Averaged MAPSE was also moderately correlated to LVEF (r = 0.47; p = 0.001).

Conclusion Averaged MAPSE, which is a simple CMR derived parameter of longitudinal function, has the potential to predict the presence of IMH in the setting of re-perfused acute MI. This parameter could be easily measured at bedside by transthoracic echocardiography to predict presence of IMH.

Funding JP and SP receive a research grant from Philips Healthcare. SP is funded by British Heart Foundation fellowship (FS/10/62/28409).
15 Predictors of right ventricular remodelling in reperfused inferior myocardial infarctions: cmr voxel feature tracking based feasibility study

P Garg, A Kidambi, DP Ripley, LE Dobson, PP Swoboda, TA Musa, AK McDiarmid, B Erhayiem, P Haaf, JP Greenwood and S Plein

Heart 2015 101: A8
doi: 10.1136/heartjnl-2015-307845.15

Updated information and services can be found at:
http://heart.bmj.com/content/101/Suppl_2/A8.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/