Treatment of children with pulmonary hypertension.
Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension.
The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

Georg Hansmann,1 Christian Apitz2

ABSTRACT
Treatment of children and adults with pulmonary hypertension (PH) with or without cardiac dysfunction has improved in the last two decades. The so-called pulmonary arterial hypertension (PAH)-specific medications currently approved for therapy of adults with PAH target three major pathways (endothelin, nitric oxide, prostacyclin). Moreover, some PH centres may use off-label drugs for compassionate use. Pulmonary hypertensive vascular disease (PHVD) in children is complex, and selection of appropriate therapies remains difficult. In addition, paediatric PAH/PHVD therapy is vastly based on experience and trial data from adult rather than paediatric studies; however, the first randomised paediatric PAH trials have been conducted recently. We present consensus recommendations for the treatment of children with PH. Class of recommendation and level of evidence were assigned based on paediatric data only or on adult studies that included >10% children. After a systematic literature search and analysis of the published data, we developed treatment strategies and algorithms that can guide goal-oriented PH therapy. We discuss early combination therapy (double, triple) in patients with PAH in functional class II–IV and in those with inadequate response to the initial pharmacotherapy. In those children with progressive, severe PAH and inadequate response, advances in drug development, and interventional and surgical approaches provide promising new strategies to avoid, reverse or ameliorate right heart failure and left ventricular compression. In particular, first follow-up data indicate that Potts shunt (left pulmonary artery to descending aorta anastomosis) may be an alternative destination therapy, or bridge to bilateral lung transplantation, in end-stage paediatric PAH.

INTRODUCTION
Pulmonary arterial hypertension (PAH) is still an important cause of morbidity and mortality in children. Despite recent developments in PAH-specific therapies, survival of patients with idiopathic PAH remains poor and appears to be worse in children compared with adults. During the past few years, treatment of PAH has undergone a remarkable evolution, which has led to the current approval by regulatory agencies of 10 drugs for adult patients from three main pharmacological groups (addressing three pathways) and four different routes of administration (oral, inhaled, subcutaneous and intravenous). Additional drugs are expected in the near future. Modern drug therapy improves the symptoms of PAH patients and slows down the rates of clinical deterioration. However, emerging therapeutic strategies for adult PAH, such as upfront oral combination therapy, have not been sufficiently studied in children. Moreover, the complexity of pulmonary hypertensive vascular disease (PHVD) in children makes the selection of appropriate therapies a great challenge far away from a mere prescription of drugs. Therapy of paediatric PH is rather characterised by a complex strategy that includes the evaluation of severity and prognosis of the individual disease, the estimation of efficacy of different drugs, and their interaction and combination, as well as supportive and general measures.

Recently, additional surgical and interventional techniques for palliation of children with severe PAH have been reported. The beneficial effects of these strategies are mainly based on the relief of right ventricle (RV) pressure overload with a subsequent reduction of the interventricular septum shift to the left ventricle (LV), and improvement of systolic and diastolic LV performance.

In this paper, we present a comprehensive overview of the current available drug-based and interventional/surgical treatments in paediatric PH and provide the recommendations of the European Paediatric Pulmonary Vascular Disease Network.

METHODS
The recommendations given in table 1 relate to the grading system currently suggested by the European Society of Cardiology (ESC) and the American Heart Association, and were based on paediatric data only, or adult studies enrolling >10% children (class of recommendation, level of evidence). The grading and voting process within the writing group is outlined in the executive summary. Computerised searches of the PubMed/MEDLINE bibliographic database were conducted between January 1990 and November 2015. Clinical trials, guidelines and reviews limited to paediatric data were searched using the terms ‘pulmonary hypertension’, ‘heart failure’, ‘pharmacotherapy’, ‘drugs’, ‘randomized controlled trial’, ‘atrial septostomy’.
Pulmonary vascular disease

Table 1 Recommendations on treatment of children with pulmonary hypertension

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen therapy is reasonable in patients with hypoxaemic PH who consistently have oxygen saturations < 92% or PaO₂ <60 mm Hg</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Inhalative oxygen can be particularly useful for patients with PH and an element of parenchymal lung disease (eg, bronchopulmonary dysplasia in CLD)</td>
<td>IIA</td>
<td>B</td>
</tr>
<tr>
<td>Inhalative oxygen can be useful for patients with intrapulmonary shunt, and important for patients with PH while at altitude or during air travel</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Based on PAH and heart failure studies in adults, mineralocorticoid receptor blockade with spironolactone can be beneficial in patients with PAH by improving right ventricle and left ventricle diastolic function, particularly in 'heart failure with preserved ejection fraction'</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Diuretic therapy may be considered for selected paediatric patients with pulmonary hypertension</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>Diuretic therapy should be initiated cautiously since patients with PH/PPHVD are often pre-load dependent to maintain optimal cardiac output</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>The benefit of chronic anticoagulation (warfarin, phenprocoumon) in children with PAH is unclear (so far not studied in children)</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>Chronic anticoagulation can be useful in patients with progressive IPAH/PAH (empirical goal INR 2.0–2.5), patients with CTEPH, patients with low cardiac output and those with hypercoaguable states</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Indication for anticoagulation should be critically reviewed, especially in small children prone to haemorrhagic complications. In these cases, antiplalet therapy (eg, ASA) may be an alternative</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Anticoagulation is potentially harmful in children with hereditary haemorrhagic telangiectasia or portopulmonary hypertension</td>
<td>III</td>
<td>C</td>
</tr>
<tr>
<td>Before starting targeted PAH therapy for chronic PH/PPHVD, vasodilator responsiveness should be determined by cardiac catheterisation and anatomic obstruction from pulmonary venous disease or from left-sided heart disease should be excluded (see ref 16)</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Calcium channel blockers (CCBs): A trial of CCB monotherapy should be pursued only in those patients who have previously been shown to be acutely reactive to INO-α-oxygen, that is, those who have a positive AVR (‘AVR responders’)</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>For children with a negative AVR, or in those with a failed or non-sustained response to CCBs, risk stratification should probably determine additional targeted therapy</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>CCBs are contraindicated in children who have not undergone AVT, non-responders to acute vasodilator testing and in those with right heart failure, that is, WHO functional class IV, regardless of acute vasodilatory response (due to potential negative inotropic effect of CCB, especially in patients with low cardiac output)</td>
<td>III</td>
<td>C</td>
</tr>
<tr>
<td>The majority of children with severe PAH are non-responsive to acute vasodilator testing to INO-α-oxygen and require ‘targeted’ therapy other than CCBs</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In the child with mild to moderate chronic PH/PPHVD and lower risk (figure 1), initiation of oral goal-targeted therapy is recommended (figures 2 and 3), regardless of a negative AVR, and should begin with either a PDE-5-inhibitor or an endothelin receptor antagonist</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Oral sildenafil can be useful in the setting of INO therapy withdrawal in postoperative PH or in the presence of PH related to chronic lung disease</td>
<td>IIA</td>
<td>B</td>
</tr>
<tr>
<td>High-dose oral sildenafil treatment (defined in the STARTS-1/-2 RCT, and table 2), either as monotherapy, or add-on drug, carries an unfavourable risk-to-benefit ratio in children (>8 kg, >1 year old) with PAH/PPHVD, including potentially increased mortality</td>
<td>III</td>
<td>B</td>
</tr>
<tr>
<td>Intravenous sildenafil can be advantageous in neonates with PPHN treated with or without INO</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>In severe (WHO functional class IV) and/or rapidly progressive PH/PPHVD (diagnosed by cardiac catheterisation and non-invasive imaging), continuous intravenous prostacyclin analogue therapy, that is, epoprostenol or treprostinil, should be started without delay (start with prostanoïd monotherapy or dual/triple combination therapy including prostacyclin analogues)</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Start of prostacyclin analogue therapy with intravenous treprostinil (COR IIA, C) or intravenous iloprost (COR IIA, C). Instead of epoprostenol, may be considered in certain circumstances, given the advantage of longer plasma half-life and greater stability/ease of application for both treprostinil and iloprost (see main text and table 2, for indications and adverse effects)</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Early combination therapy with two oral PAH drugs in newly diagnosed (treatment naive) children with PAH in WHO functional class II–III may be considered</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Combination of intravenous (eg, epoprostenol, treprostinil) or subcutaneous prostacyclin analogues (treprostinil) with 1 or 2 oral PAH-targeted drugs (eg, sildenafil, bosentan) may result in better long-term survival in PAH</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>INO is mainly used in the ICU setting and is useful in patients with acute pulmonary vascular crisis and/or acute exacerbation of PH in the setting of an underlying parenchymal lung disease and/or PPHN</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Concomitant sildenafil should be administered to prevent rebound PH in patients who have signs of increased PAP on withdrawal of INO and require restart of INO despite preceding gradual weaning of INO</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Atrial septostomy can be considered in patients with functional class III and IV and recurrent syncope under combined medical therapy, and as palliative bridge to transplant increasing the chance for survival while waiting for a donor organ</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>Based on a small series of children with end-stage PAH, a surgical anastomosis between the left pulmonary artery and the descending aorta (Potts shunt) may be considered as valuable alternative (destination therapy) or bridge to bilateral lung transplantation in selected cases</td>
<td>IIA</td>
<td>C</td>
</tr>
</tbody>
</table>

The recommendations relate to the grading system currently suggested by the European Society of Cardiology and the American Heart Association, and were based on paediatric data only (class, level of evidence). The grading and voting process within the writing group is outlined in the executive summary in this special issue. Recommendations on PH therapy specifically in neonatal chronic lung disease and persistent pulmonary hypertension of the newborn, and PAH associated with congenital heart disease, are outlined in separate articles of this special issue.

Pharmacotherapy

Drug therapy in pulmonary hypertension consists of so-called ‘supportive’ and ‘PAH-specific’ therapy (table 1). Detailed information on dosing, adverse effects and other information can be found in table 2.
The overall goal of any PH therapy is the transition of a patient from the ‘higher risk’ to the ‘lower risk’ group. Supportive therapy may include oxygen, anticoagulants, diuretics, mineral-corticoid receptor antagonists, and digoxin. These measures are applied on an individual basis since the currently available studies provide either none or rather ambiguous/contradictory data on most of these therapies in adults and children with PH.

Supplemental oxygen
Children with PH and pulmonary diffusion impairment, for example, infants with CLD/bronchopulmonary dysplasia, those living with PH at high altitude, usually benefit from overnight or continuous oxygen supplementation to overcome chronic alveolar hypoxia. Long-term nocturnal oxygen supplementation improves symptoms in Eisenmenger patients but has not been shown to increase survival. Oxygen therapy is reasonable in patients with hypoxaemic PH who have oxygen saturations <92% and/or PaO2 <60 mm Hg. Any oxygen supplementation should result in a sustained rise in oxygen saturation and improvement of symptoms.

Mineralocorticoid receptor antagonists (spironolactone)
Spironolactone has only mild diuretic effects but blocks aldosterone and renin angiotensin aldosterone system signalling. RV remodelling and dysfunction appears to be responsive to MR blockade (spironolactone) in the ARIES-1/-2 trials. In a post hoc analysis of the ARIES-1/-2 trials, adult patients with PAH who received ambrisentan plus spironolactone had a better outcome than those who received ambrisentan alone. Most recently, both plasma aldosterone and its profibrotic target, galectin-3, were found to be increased in adult PAH and associated with WHO functional class, pointing to their role as potential tandem biomarkers.

Diuretics (loop diuretics, thiazides)
Diuretic agents such as furosemide probably have been overused in patients with PAH. Diuretics should be initiated if at all cautiously as patients with PAH are frequently preload dependent to maintain sufficient cardiac output.

Digitalis
There are no sufficient clinical data to recommend or refuse the use of digoxin in adult or paediatric PAH patients with RV dysfunction, or overt right heart failure.

Figure 1

Determinants of risk in paediatric pulmonary hypertensive vascular disease. The variables listed distinguish between lower risk and higher risk. The intermediate risk group is broad and not specifically defined. Overall, these determinants have only level of evidence C due to sparse or lacking paediatric data. Healthcare providers may include here pulmonary vascular resistance (PVR)/systemic vascular resistance (SVR) ratio, the 6 min walk distance and the max. oxygen consumption (VO2 max.) obtained during cardiopulmonary exercise testing as risk variables; however, it is unclear where exactly the cut-off values should be set. One must also note that most of these variables have been validated mostly for idiopathic pulmonary arterial hypertension (PAH) and the cut-off levels used above may not necessarily apply to other forms of pulmonary arterial hypertension (PAH). Furthermore, the use of approved therapies and their influence on the variables should be considered in the evaluation of the risk. Modified from McLaughlin et al. BNP, brain natriuretic peptide; CI, cardiac index (syn. Qs); mPAP, mean pulmonary artery pressure, mRAP, mean right atrial pressure; NT-proBNP, N terminal pro BNP; PVRi, PVR index; RA, right atrium; RV, right ventricle; SVRi, SVR index.

The overall goal of any PH therapy is the transition of a patient from the ‘higher risk’ to the ‘lower risk’ group (Figure 1).

Supportive (‘conventional’) therapy
Therapies typically used for left heart failure have been also used for the treatment of patients with RV failure. Supportive therapy may include oxygen, anticoagulants, diuretics, mineral-corticoid receptor antagonists (spironolactone), digoxin. These measures are applied on an individual basis since the currently available studies provide either none or rather ambiguous/contradictory than valid data on most of these therapies in adults and children with PH.

Diuretics (loop diuretics, thiazides)
Diuretic agents such as furosemide probably have been overused in patients with PAH. Diuretics should be initiated – if at all cautiously as patients with PAH are frequently preload dependent to maintain sufficient cardiac output.

Digitalis
There are no sufficient clinical data to recommend or refuse the use of digoxin in adult or paediatric PAH patients with RV dysfunction, or overt right heart failure.

Mineralocorticoid receptor antagonists (spironolactone)
Spironolactone has only mild diuretic effects but blocks aldosterone and renin angiotensin aldosterone system signalling. RV remodelling and dysfunction appears to be responsive to MR blockade (spironolactone) in the ARIES-1/-2 trials. In a post hoc analysis of the ARIES-1/-2 trials, adult patients with PAH who received ambrisentan plus spironolactone had a better outcome than those who received ambrisentan alone. Most recently, both plasma aldosterone and its profibrotic target, galectin-3, were found to be increased in adult PAH and associated with WHO functional class, pointing to their role as potential tandem biomarkers.
Anticoagulation
A potential benefit of long-term anticoagulation (cumarin, warfarin) has not been studied in paediatric PH (PFAH), and its use in adults with PH currently is the subject of an ongoing debate. The role of the new oral anticoagulants (NOACs) in PPH is unknown. Thus, aspirin may be considered an alternative to coumadin or warfarin in paediatric idiopathic pulmonary arterial hypertension (IPAH)/heritable pulmonary arterial hypertension (HPAH), particularly in younger, very active children with an assumed higher bleeding risk because of higher accident rates (table 2). The ESC/ERS guidelines for adult PH (2015) carefully outline that anticoagulants may be considered only in adult PAH patients with IPAH, HPAH and PAH associated with anorexigen use (class of recommendation IIb, level of evidence C). The use of oral anticoagulants in Eisenmenger syndrome is controversial because the high incidence of PA thrombosis and stroke has to be balanced against the increased risk of haemorrhage and haemoptysis. Anticoagulation is potentially harmful in children with hereditary haemorrhagic telangiectasia or portopulmonary hypertension.

Many PH centres would recommend oral anticoagulation (cumarin, warfarin) in children with high-risk IPAH/HPAH (figures 1 and 2), paediatric PAH patients with low cardiac output, those with hypercoaguable conditions and/or those with long-term indwelling catheters (empiric international normalised ratio (INR) goal 2.0–2.5; some centres recommend INR 1.5–2.0 in young children).

Routine vaccinations are generally recommended for children with PAH: especially infections with influenza, respiratory syncytial virus and pertussis, as well as pneumococcal infections, may lead to PH exacerbation and higher morbidity/mortality.

For the following discussion of PAH-targeted pharmacotherapies and the according recommendations (tables 1 and 2), we focused the main text on paediatric PAH studies, adult studies that included at least 10% children and the most recent studies (2013–2015) on novel oral compounds (see methods in the executive summary). The key outcome data of randomised controlled trials (RCTs) in adult PAH are summarised in tables 3–6.

Of note, most PAH-targeted medications are not approved by the European Medicines Agency (EMA) or the US Food and Drug Administration (FDA) for the use in children with PAH (‘off-label’ use).

Calcium channel blockers
Patients who fulfill the criteria of a positive response during acute vasoreactivity testing (AVT) are usually initially treated with an oral calcium channel blocker (CCB) (amlodipine, nifedipine or diltiazem) (table 2). In patients with IPAH/PH, the haemodynamic change that defines a positive
response to AVT (acute vasoreactivity response (AVR)) in PAH without a shunt (ratio of pulmonary to systemic flow (Qp:Qs) = 1:1) for children should be considered as a >20% fall in mean pulmonary artery pressure (PAP) and pulmonary vascular resistance index (PVRi)/systemic vascular resistance index (SVRi) ratio without a decrease in cardiac output. Intravenous epoprostenol should be prioritised as it has reduced the 3 months rate for mortality in high-risk adult patients with PAH also as monotherapy. Children with IPAH who responded to AVT had a survival of 97%, 97% and 81% at 1, 5 and 10 years, respectively; sustained treatment success with CCB was observed, but declined from 84% to 47% in the first 10 years after start of CCB therapy. Children with IPAH who were treated with a CCB regardless of their negative response during AVT had lower survival rates of 45%, 34%, 29% and 29% at 1, 2, 3 and 4 years, respectively.

CCBs are contraindicated in non-responders, patients with RV failure (WHO functional class IV) regardless of the AVT response, and those who have not undergone AVT. The CCBs with significant negative inotropic effects (ie, non-dihydropyridines: verapamil, diltiazem) are usually not recommended for use in the first year of life. However, particularly diltiazem can have additional benefit in children with high heart rates because of its negative chronotropic/dromotropic effects, allowing longer filling and ejection times.

For children with a negative AVT or non-sustained response to CCB, PAH-targeted therapy via oral, inhalative and/or intravenous agents is required (see below). PAH-targeted therapy is currently predominantly based on three major pathways, the NO/cGMP pathway, the endothelin pathway and the prostacyclin pathway.
Table 2 Pharmacotherapy for paediatric PH

<table>
<thead>
<tr>
<th>Agent</th>
<th>Indication</th>
<th>Dosing</th>
<th>Expected benefit</th>
<th>Possible side effects</th>
<th>COR/LOE comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium channel blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Amlodipine** | Only if reactive to vasodilator testing
Do not use in patients with high right atrial pressure or low cardiac output | Starting dose: 0.1 mg/kg/dose (or 1–5 mg/ adult dose), twice daily orally, uptitrate
Maintenance dose: 2.5–10 mg/dose twice daily orally
Max. adult dose 20 mg/day orally | Decrease in PVR | Bradycardia
Decreased cardiac output
Peripheral oedema
Gum hyperplasia
Constipation | COR I
LOE B
Duration of benefit may be limited even with initial favourable response
Efficacy in Eisenmenger syndrome is rare |
| **Nifedipine** | Only if reactive to vasodilator testing
Do not use in patients with high right atrial pressure or low cardiac output
Use in neonates and infants is controversial | Starting dose 0.2–0.3 mg/kg/dose three times daily orally, uptitrate
Maintenance dose: 1–2.5 mg/kg/dose twice daily orally
Max. adult dose 120–240 mg/day orally in 3 divided doses | Decrease in PVR | Bradycardia
Decreased cardiac output
Peripheral oedema
Gum hyperplasia
Constipation | COR I
LOE B
Duration of benefit may be limited even with initial favourable response
Efficacy in Eisenmenger syndrome is rare |
| **Diltiazem** | Only if reactive to vasodilator testing
Do not use in patients with high right atrial pressure or low cardiac output
Use in neonates and infants is controversial | Starting dose 0.5–0.7 mg/kg/dose three times daily orally, uptitrate
Maintenance dose: 1–1.5 mg/kg/dose three times daily orally
Max. adult dose 240 mg–360 mg/day orally in 3 divided doses
Use extended release preparations (max. 180 mg/day orally) | Decrease in PVR | Bradycardia
Decreased cardiac output
Peripheral oedema
Gum hyperplasia
Constipation
Peripheral oedema
Gum hyperplasia
Constipation | COR I
LOE B
Duration of benefit may be limited even with initial favourable response
Efficacy in Eisenmenger syndrome is rare
May cause bradycardia more than other CCB
Suspension useful in younger children |
| Phosphodiesterase type 5 inhibitors | | | | | |
| **Sildenafil** | Approved for adult PH Group 1
EMA approved for paediatric PH Group 1 (age>1 year)
FDA warning (2012) and subsequent clarification (2014) | Oral: Starting dose: 0.3–0.5 mg/kg/dose three (eg, >1 year old) or four times (eg, <1 year old) daily orally
Maintenance dose: 0.5–1 mg/kg/dose three (>1 year old) or four times (<1 year old) daily orally
<8 kg (no RCT data): Starting dose 0.3–0.5 mg/kg/dose four times daily orally
Maintenance dose: 1 mg/kg/dose four times daily orally. Maximum dose (controversial): 10 mg/dose orally three to four times daily (children)
European dosing (EMA approved): 8–20 kg: 10 mg/dose three times daily orally (less in neonates/infants < 10 kg)
≥20 kg: 20 mg/dose three times daily orally
Intravenous: 0.4 mg/kg bolus over 3 hours intravenous (optimal), then 1.6–2.4 mg/kg/d continuous intravenous infusion; do not exceed 30 mg/d | Increase in CI
Decrease in PVR
May improve diastolic ventricular function in single and biventricular circulations based on preclinical studies
Higher Sildenafil doses up to 7.2 mg/kg/d intravenous have been used in newborn infants with PPHN associated with congenital diaphragmatic hernia
Flushing
Agitation
Hypotension
Vision and hearing loss are concerning findings in premature infants
Priapism | Concomitant use of CYP3A4 inhibitors decreases clearance of sildenafil
Co-administration of bosentan leads to decreased sildenafil concentrations and increased bosentan concentrations (clinical relevance is unclear though)
Use in premature neonates not well studied | COR I
LOE B (COR III, LOE B for high dose)
1 paediatric RCT (STARTS-1/2)
A greater mortality was noted in the STARTS-2 extension study in treatment naive children treated with high dose sildenafil monotherapy
STARTS-1/2 medium dosing regimen with best effect on VO₂ max was: 8–20 kg, >1 year old: 10 mg/dose three times daily orally, 20.1–45 kg: 20 mg/dose three times daily orally >45 kg 40 mg/dose orally three times daily
FDA warning (2012) and subsequent clarification (2014) of chronic use in children 1–17 years old
Concomitant use of CYP3A4 inhibitors decreases clearance of sildenafil
Co-administration of bosentan leads to decreased sildenafil concentrations and increased bosentan concentrations (clinical relevance is unclear though)
Use in premature neonates not well studied |

Continued
<table>
<thead>
<tr>
<th>Agent</th>
<th>Indication</th>
<th>Dosing</th>
<th>Expected benefit</th>
<th>Possible side effects</th>
<th>COR/LOE comments</th>
</tr>
</thead>
</table>
| Tadalafil | Approved for adult PH Group 1 by the EMA and the FDA in 2009 | - Starting adult dose: 20 mg/dose once daily orally
- Consider titration from 20 to 40 mg/dose once daily orally
- Max. adult dose: 40 mg/dose once a day orally
- Paediatric maintenance dose probably 1 mg/kg/day orally | - Increase in CI
- Decrease in PVR
- Side effects similar to sildenafil.
- Probably no significant effect on vision | - Once a day dosing
- Safety and efficacy data in children are limited | COR I
LOE B |
| Guanylate Cyclase stimulators | | | | | COR IIb, LOE C
For Eisenmenger: COR I, LOE B
Data have been published on efficacy in Eisenmenger PH
Caution in concomitant use of CYP3A4 inducers and inhibitors |
| Riociguat | Approved by the EMA and the FDA for adult PH Group 1 in 2014:
(IPAH/HPAH only) and Group 4 PH (CTEPH) for monotherapy or combination therapy with ERA | - Starting adult dose 1 mg three times daily orally, titration required
- Maintenance adult dose 1–2.5 mg (dose three times daily orally
- Maximum adult dose 2.5 mg/dose three times daily
- No published data on paediatric dosing in 2015 | - Increase in CI
- Decrease in PVR
- Systemic arterial hypotension
- Headache, dizziness, dyspepsia
- Do not use together with PDE5-inhibitors (sildenafil, tadalafil) | - Abdominal pain, vomiting, extremity pain, fatigue, flushing, headache, oedema, nasal congestion, anaemia
- Not recommended in patients with moderate or severe hepatic impairment
- Monthly LFTs required
- Incidence of AST/ALT elevation is less in children (3.5%) compared with adults
- Fluid retention
- Teratogenicity and male infertility are risks
- Class-specific side effects are similar to bosentan
- Headache, nasopharyngitis, anaemia
- Not recommended in patients with moderate or severe hepatic impairment
- Dependent oedema may limit usefulness
- Teratogenicity and male infertility are risks (decreases in sperm count have been observed) | COR IIa, LOE C
COR IIb, LOE C
For Eisenmenger: COR I, LOE B
Data have been published on efficacy in Eisenmenger PH
Caution in concomitant use of CYP3A4 inducers and inhibitors
RCTs in adults (SERAPHIN)
Safety and efficacy data in children not available in 2015
Caution in concomitant use of CYP3A4 inducers and inhibitors |
| ERA | Bosentan (dual ET_A and ET_B receptor antagonist) | - Starting dose: 0.3–1 mg/kg/dose twice daily, titration
<10 kg: max. 2 mg/kg/dose twice daily orally
10–20 kg: max. 2 mg/kg/dose twice daily orally (32 mg tablets)
20–40 kg: 62.5 mg/dose twice daily orally
> 40 kg: 125 mg/dose twice daily orally | - Increase in CI
- Decrease in PVR
- Abdominal pain, vomiting, extremity pain, fatigue, flushing, headache, oedema, nasal congestion, anaemia
- Not recommended in patients with moderate or severe hepatic impairment
- Monthly LFTs required
- Incidence of AST/ALT elevation is less in children (3.5%) compared with adults
- Fluid retention
- Teratogenicity and male infertility are risks | - Not recommended in patients with moderate or severe hepatic impairment
- Monthly LFTs required
- Incidence of AST/ALT elevation is less in children (3.5%) compared with adults
- Fluid retention
- Teratogenicity and male infertility are risks (decreases in sperm count have been observed) | COR IIa, LOE C
COR IIb, LOE C
For Eisenmenger: COR I, LOE B
Data have been published on efficacy in Eisenmenger PH
Caution in concomitant use of CYP3A4 inducers and inhibitors |
| Macitentan (dual ET_A and ET_B receptor antagonist) | Approved by the EMA and the FDA for adult PH Group 1 (IPAH/HPAH only) | - Starting dose (adults): 5–10 mg once daily orally
Maintenance adult dose 10 mg once daily orally
No published data on paediatric dosing in 2015 | - Increase in CI
- Decrease in PVR
- Class-specific side effects are similar to bosentan
- Headache, nasopharyngitis, anaemia
- Not recommended in patients with moderate or severe hepatic impairment
- Dependent oedema may limit usefulness
- Teratogenicity and male infertility are risks (decreases in sperm count have been observed) | - Class-specific side effects are similar to bosentan
- Headache, nasopharyngitis, anaemia
- Not recommended in patients with moderate or severe hepatic impairment
- Dependent oedema may limit usefulness
- Teratogenicity and male infertility are risks (decreases in sperm count have been observed) | COR IIb, LOE C
RCTs in adults (SERAPHIN)
Safety and efficacy data in children not available in 2015
Caution in concomitant use of CYP3A4 inducers and inhibitors |

Table 2 Continued

<table>
<thead>
<tr>
<th>Agent</th>
<th>Indication</th>
<th>Dosing</th>
<th>Possible side effects</th>
<th>COR/LOE comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrisentan (selective ET1 receptor antagonist)</td>
<td>Approved for adult PH Group 1 by the FDA and the EMA</td>
<td>Adult dosing starts with 5 mg daily up to 10 mg daily</td>
<td>• Increased CI
• Decrease in PVR
• Class-specific side effects are similar to bosentan
• Incidence of serum aminotransferase elevation is low
• May decrease effectiveness of birth control
• Dependent oedema may limit usefulness
• Teratogenicity and male infertility are risks
• No drug–drug interactions between ambrisentan and sildenafil or tadalafil observed</td>
<td>COR IIa LOE C
• Safety and efficacy data in children are limited
• Caution in concomitant use of CYP3A4 inhibitors and inducers</td>
</tr>
<tr>
<td>Agent</td>
<td>Indication</td>
<td>Dosing</td>
<td>Expected benefit</td>
<td>Possible side effects</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Iloprost</td>
<td>Approved adult for PH Group 1</td>
<td>Intravenous infusion</td>
<td>Improved CI</td>
<td>Intradose infusion (rarely used): similar to epoprostenol and treprostin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paediatric dosing has not been determined</td>
<td>Improved PVR</td>
<td>for inhalation: jaw pain, wheezing; especially at the initiation of therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intravenous infusion</td>
<td></td>
<td>a new chip for the adaptive aerosol delivery systems allows now to reduce the duration of inhalations from 10–15 down to 4–5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starting dose: 1 ng/kg/min intravenous, upitrate</td>
<td></td>
<td>In paediatrics, the dosing frequency and lack of compliance may limit its use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance dose 5–10 ng/kg/min intravenously as tolerated. A maximum intravenous dose has not been described.</td>
<td></td>
<td>Many experts recommend every 3 h inhalations during the day time for better compliance that can be recorded and monitored with a chip within the inhaler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nebuliser for children (< ca. 5 years) and small inhaling devices for older children</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paediatric dosing has not been determined but 6–9 inhalations per day are required, each lasting 8–15 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start with 2.5 μg/dose (1.25 μg in small children) and uptitrate to 5 μg/dose as tolerated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dose range: Ampules deliver 2.5–5 μg to the mouth piece</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhalation (nebuliser, inhaler)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nebuliser for children (< ca. 5 years) and small inhaling devices for older children</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paediatric dosing has not been determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starting dose: 200 μg orally twice daily. Dosing increase in 200 μg twice daily steps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. dose 1.6 mg twice daily orally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selexipag (oral use)</td>
<td>Prostacyclin IP receptor agonist</td>
<td>Adult dosing:</td>
<td>Reduction of morbidity/ mortality event. Improved CI Improved PVR</td>
<td>To be determined (RCT and postmarketing surveillance pending)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pending approval for adult PH group 1 (PAH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No paediatric data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR antagonists</td>
<td>Spironolactone</td>
<td>Improves hepatic congestion and oedema</td>
<td>Decreased signs of right heart failure</td>
<td>Hyperkalaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loop diuretics, thiazides and spironolactone are all dosed by weight and not differently than for other forms of heart failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuretics</td>
<td>Furosemide (loop diuretic)</td>
<td>Loop diuretics, thiazides and spironolactone are all dosed by weight and not differently than for other forms of heart failure</td>
<td>Decreased signs of right heart failure</td>
<td>Caution: moderate to excessive diuresis can reduce the preload of the failing RV and worsen clinical status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May improve hepatic congestion and oedema.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrochlorothiazide (thiazide)</td>
<td>Loop diuretics, thiazides and spironolactone are all dosed by weight and not differently than for other forms of heart failure</td>
<td>Decreased signs of right heart failure</td>
<td>Care is needed as over diuresis can reduce the preload of the failing RV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be overused in PAH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Agent</th>
<th>Indication</th>
<th>Dosing</th>
<th>Expected benefit</th>
<th>Possible side effects</th>
<th>COR/LOE comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalative therapies other than prostanoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>Helpful for cyanotic patients with an element of CLD or intrapulmonary shunt</td>
<td>1–2 L/min by nasal prongs</td>
<td>Improved sense of well-being</td>
<td>Too high a flow rate can dry the nares and cause epistaxis or rhinitis</td>
<td>COR I LOE C</td>
</tr>
<tr>
<td>Nitric oxide (continuous inhalation)</td>
<td>PPHN</td>
<td>0–5 ppm</td>
<td>Selective fall in PVR</td>
<td>Methaemoglobin and NO<sub>2</sub> at higher doses</td>
<td>COR IIa (PPHN), COR IIb (postop), LOE B Not approved by the EMA or the FDA for postoperative CHD</td>
</tr>
<tr>
<td>Anticoagulatives and antiplatelet agents</td>
<td>Acute exacerbation of PAH, including PH crisis</td>
<td>0–20 ppm</td>
<td>Prevention thrombosis and thromboembolic events</td>
<td>The risk of anticoagulation in paediatrics must be balanced with the hypothetical benefits</td>
<td>For IPAH/HPAH: COR IIb LOE C</td>
</tr>
<tr>
<td>Coumadin, warfarin, phenprocoumon (vitamin K antagonists)</td>
<td>Acute pulmonary embolus, hypercoagulation, central lines</td>
<td>Individual dosing depends on agent used, co-medication, patient history</td>
<td>Prevention thrombosis and thromboembolic events</td>
<td>Teratogenic effects</td>
<td>For APAH: COR IIb LOE C</td>
</tr>
<tr>
<td>Acetylsalicylic acid (ASA; aspirin)</td>
<td>PPHN</td>
<td>Maintenance dose 2–4 mg/kg/dose once daily orally; max. 100 mg/dose</td>
<td>Inhibition of platelet aggregation, thrombosis and thromboembolic events</td>
<td>Usual risks for ASA: bleeding, Reye syndrome, asthma</td>
<td></td>
</tr>
<tr>
<td>Contraceptives</td>
<td>Pregnancy in women with moderate-to-severe PH bares a high risk of maternal and fetal death</td>
<td>Non-oestrogen containing formulations are best</td>
<td>Prevention of pregnancy and associated morbidity/mortality</td>
<td>Combination with clopidogrel or vitamin K antagonist carries moderate to high bleeding risk</td>
<td></td>
</tr>
</tbody>
</table>

COR and LOE grading (higher than COR IIb and LOE C) is based on paediatric data only (or adult RCTs that included >10% children).

ALT, alanine aminotransferase; APAH, pulmonary arterial hypertension associated with disease; AST, aspartate aminotransferase; CCB, calcium channel blocker; CHD, congenital heart disease; COR, class of recommendation; CLD, chronic lung disease; EMA, European Medicines Agency; ERA, endothelin receptor antagonist; ET, endothelin; FDA, US Food and Drug Administration; HCT, haematoctrit; HfPEF, patients with heart failure and preserved ejection fraction; HPAH, heritable pulmonary arterial hypertension; INO, inhaled nitric oxide; INR, international normalised ratio; IPAH, idiopathic pulmonary arterial hypertension; LFT, liver function test; LOE, level of evidence; LV, left ventricle; MR, mineralocorticoid receptor; PDE5, phosphodiesterase type 5; PH, pulmonary hypertension; PPHN, persistent pulmonary hypertension of the newborn; PVR, pulmonary vascular resistance; RCT, randomised controlled trial; RV, right ventricular; STARTS, Sildenafil in Treatment-Naive Children, Aged 1–17 Years, with Pulmonary Arterial Hypertension.
Endothelin-1 receptor antagonists

Bosentan

Activation of the endothelin system has been demonstrated in patients with PAH, whereas endothelin has vasoconstrictor and mitogenic effects. Bosentan is an oral, dual endothelin A-receptor and B-receptor antagonist (ERA for ETA and ETB). Multiple RCTs on bosentan in adults with PAH (idiopathic, associated with CHD and CTD) showed improvement in exercise capacity, functional class, haemodynamics, echocardiographic variables and time to clinical worsening.

Retrospective observational studies and case series demonstrated that bosentan therapy is safe and appears to be effective in slowing disease progression in children with PAH.25 26 A retrospective study of 86 children treated with bosentan with or

Table 3 Characteristics of RCTs with PAH drugs interfering with the endothelin pathway (endothelin receptors antagonists)

<table>
<thead>
<tr>
<th>Drug(s) tested</th>
<th>Study</th>
<th>Patients number</th>
<th>Duration (weeks)</th>
<th>Background Therapy</th>
<th>Primary end point</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrisentan</td>
<td>ARIES-134</td>
<td>202</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td>ARIES-234</td>
<td>192</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosentan</td>
<td>Study-35135</td>
<td>32</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td>BREATHE-3136</td>
<td>213</td>
<td>16</td>
<td>No</td>
<td>6MWD</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td>EARLY37</td>
<td>185</td>
<td>24</td>
<td>No</td>
<td>6MWD</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td>BREATHE-539</td>
<td>54</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td>COMPASS-238</td>
<td>334</td>
<td>99</td>
<td>Sildenafil</td>
<td>TTCW</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td></td>
<td>SERAPHIN33</td>
<td>742</td>
<td>115</td>
<td>No or sildenafil</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
</tbody>
</table>

Table 4 Characteristics of RCTs with PAH drugs interfering with the nitric oxide pathway (soluble guanylate cyclase stimulators, phosphodiesterase type-5 inhibitors)

<table>
<thead>
<tr>
<th>Drug(s) tested</th>
<th>Study</th>
<th>Patients number</th>
<th>Duration (weeks)</th>
<th>Background Therapy</th>
<th>Primary end point</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riociguat</td>
<td>PATENT45</td>
<td>443</td>
<td>12</td>
<td>No or bosentan</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td>PATENT plus47</td>
<td>30</td>
<td>18</td>
<td>Sildenafil</td>
<td>Supine SBP</td>
<td>Terminated for excess of SAE in the treated group</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>SUPER-148</td>
<td>277</td>
<td>12</td>
<td>No</td>
<td>TT</td>
<td>TT improved</td>
</tr>
<tr>
<td></td>
<td>Sastry49</td>
<td>22</td>
<td>12</td>
<td>No</td>
<td>TT</td>
<td>TT improved</td>
</tr>
<tr>
<td></td>
<td>Singh50</td>
<td>20</td>
<td>6</td>
<td>No</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td>PACES51</td>
<td>264</td>
<td>16</td>
<td>Epoprostenol</td>
<td>TTCW</td>
<td>TTCW and haemodynamics improved</td>
</tr>
<tr>
<td></td>
<td>Pfister study</td>
<td>103</td>
<td>12</td>
<td>bosentan</td>
<td>TTCW</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td></td>
<td>A1481243</td>
<td>12</td>
<td></td>
<td></td>
<td>TTCW</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>STARTS-139</td>
<td>235</td>
<td>16</td>
<td>No</td>
<td>TT</td>
<td>%change in VO2 max, functional class and hemodynamic improved with medium and high doses</td>
</tr>
<tr>
<td></td>
<td>STARTS-240</td>
<td>206</td>
<td>208</td>
<td>No</td>
<td>Survival</td>
<td>Survival improved</td>
</tr>
<tr>
<td>Tadalafil</td>
<td>PHIRST52</td>
<td>405</td>
<td>16</td>
<td>No or bosentan</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td>Vardenafil*</td>
<td>66</td>
<td>12</td>
<td>No</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
</tbody>
</table>

Note that most of the listed RCT data were derived from studies in adults with PAH. Healthcare providers must obtain valid information on the approval of any of the listed medications for use in paediatric PAH in the according country.

6MWD, 6 min walk distance; PAH, pulmonary arterial hypertension; PVR, pulmonary vascular resistance; RCT, randomised controlled trial; SaO2, finger oxygen saturation; TTCW, time to clinical worsening.

Endothelin-1 receptor antagonists

Bosentan

Activation of the endothelin system has been demonstrated in patients with PAH, whereas endothelin has vasoconstrictor and mitogenic effects. Bosentan is an oral, dual endothelin A-receptor and B-receptor antagonist (ERA for ETA and ETB). Multiple RCTs on bosentan in adults with PAH (idiopathic,
without concomitant therapy was associated with sustained haemodynamic and clinical improvement, and an estimated 2-year survival of 91%.25 However, at 4 years, disease progression in these patients on bosentan was high (54%), with a survival estimate of 82%.27 More than 30 children (≥2 years and <12 years old) were enrolled in the non-randomised FUTURE-1 study (n=36)28 and its extension study, FUTURE-2 (33 children continued on bosentan therapy).29 In the FUTURE-2 study30 (33 children, 2–11.9 years old; median exposure 28 months), adverse events (AEs) that were considered treatment-related occurred in 15 (41.7%) patients. Of 51 serious AEs, 3 were considered treatment-related: two incidences of reported PAH worsening and one of autoimmune hepatitis. Thus, in FUTURE-2, the paediatric bosentan formulation (dispersable tablets; 32 mg) was generally well tolerated, its safety profile comparable to that of the adult formulation when

Table 5 Characteristics of RCTs with PAH drugs interfering with the prostacyclin pathway (prostacyclin analogues and prostacyclin receptors agonists)

<table>
<thead>
<tr>
<th>Drug(s) tested</th>
<th>Study</th>
<th>Patients number</th>
<th>Duration (weeks)</th>
<th>Background Therapy</th>
<th>Primary end point</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoprostenol</td>
<td>Barst68 22</td>
<td>116</td>
<td>52</td>
<td>No</td>
<td>CW</td>
<td>CW not improved</td>
</tr>
<tr>
<td></td>
<td>Barst13</td>
<td>23</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td>Badesch73</td>
<td>81</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td>Treprostinil</td>
<td>Inhale* TRIUMPH75</td>
<td>235</td>
<td>12</td>
<td>Bosentan or sildenafil</td>
<td>6MWD</td>
<td>6MWD improvement (+20 m at peak, +12 m at trough)</td>
</tr>
<tr>
<td></td>
<td>Orally*—Freedom M76</td>
<td>185</td>
<td>16</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improvement (+26 m at peak, +17 m at trough)</td>
</tr>
<tr>
<td></td>
<td>Orally*—Freedom C77</td>
<td>354</td>
<td>16</td>
<td>ERA and/or PDE-5i</td>
<td>6MWD</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td></td>
<td>Orally*—Freedom C78</td>
<td>310</td>
<td>16</td>
<td>ERA and/or PDE-5i</td>
<td>6MWD</td>
<td>TTCW not improved</td>
</tr>
<tr>
<td></td>
<td>Inhalative* AIR79</td>
<td>203</td>
<td>12</td>
<td>No</td>
<td>6MWD and FC</td>
<td>6MWD and WHO FC improved</td>
</tr>
<tr>
<td></td>
<td>STEP66</td>
<td>67</td>
<td>12</td>
<td>Bosentan</td>
<td>6MWD</td>
<td>6MWD improved (p=0.05)</td>
</tr>
<tr>
<td></td>
<td>COMBI80</td>
<td>40</td>
<td>12</td>
<td>Bosentan</td>
<td>6MWD (–)</td>
<td>Terminated for futility</td>
</tr>
<tr>
<td></td>
<td>Beraprost* ALPHABET81</td>
<td>130</td>
<td>12</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td>Selexipag* Phase 270</td>
<td>43</td>
<td>17</td>
<td>ERA and/or PDE-5i</td>
<td>PVR</td>
<td>PVR improved</td>
</tr>
<tr>
<td></td>
<td>GRIPHON71</td>
<td>1156</td>
<td>74</td>
<td>ERA and/or PDE-5i</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
</tbody>
</table>

Modified from Galiè N et al.12
Note that most of the listed RCT data were derived from studies in adults with PAH. Healthcare providers must obtain valid information on the approval of any of the listed medications for use in paediatric PAH in the according country.

Table 6 Characteristics of RCTs with PAH drugs testing upfront combination therapy

<table>
<thead>
<tr>
<th>Drug(s) tested</th>
<th>Study</th>
<th>Patients number</th>
<th>Duration (weeks)</th>
<th>Background Therapy</th>
<th>Primary end point</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoprostenol vs epoprostenol+bosentan</td>
<td>BREATHE-289</td>
<td>33</td>
<td>12</td>
<td>No</td>
<td>PVR</td>
<td>PVR not improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6MWD not improved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6MWD not improved</td>
<td></td>
</tr>
<tr>
<td>Bosentan, sildenafil, intravenous epoprostenol</td>
<td>Sitbon82</td>
<td>19</td>
<td>16</td>
<td>No</td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td>Ambrisentan or tadalafil vs ambrisentan+tadalafil</td>
<td>AMBITION83</td>
<td>500</td>
<td>78</td>
<td>No</td>
<td>TTCW</td>
<td>TTCW improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6MWD</td>
<td>6MWD improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PVR</td>
<td>PVR improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RV mass (MRI)</td>
<td>RV mass improved</td>
</tr>
<tr>
<td>Ambrisentan+tadalafil</td>
<td>Hassoun84 (SSc only)</td>
<td>24</td>
<td>36</td>
<td>No</td>
<td>PVR</td>
<td>PVR improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RV mass (MRI)</td>
<td>RV mass improved</td>
</tr>
</tbody>
</table>

Modified from Galiè N et al.12
Note that most of the listed RCT data were derived from studies in adults with PAH. Healthcare providers must obtain valid information on the approval of any of the listed medications for use in paediatric PAH in the according country.

6MWD, 6 min walk distance; PAH, pulmonary arterial hypertension; PVR, pulmonary vascular resistance; RCT, randomised controlled trial; RV, right ventricle; TTCW, time to clinical worsening; SSc, systemic sclerosis.
used in children, and the efficacy profile of bosentan similar to previous paediatric and adult PAH studies of shorter duration. In adult PAH patients with Eisenmenger syndrome, bosentan improved exercise capacity and haemodynamics with few AEs, in the placebo-controlled BREATHE-5 trial (figure 2, tables 2 and 3). Based on data of the BREATHE-3 study (add-on bosentan to prostacyclin therapy in children) and FUTURE-1 and 2 studies, the paediatric formulation of bosentan was approved by the EMA for use in children with PAH older than 2 years of age, with a maximum target dose of 2 mg/kg body weight per dose daily (table 2). Recent safety data on the use of bosentan under 2 years of age are available through the FUTURE-3 study on the dosing interval in 64 PAH children from 3 months to 11 years of age. Subsequently, the EMA approved bosentan for the treatment of PAH in children starting from 1 year of age. Elevation of serum liver aminotransferases may occur as a serious AE during bosentan therapy, but was more frequent in adults and children ≥12 years of age (7.8%) than children under 12 years (2.7%) in an European Postmarketing Surveillance study. Nevertheless, it is recommended to perform liver function testing monthly in children receiving bosentan.

Ambrisentan

The ARIES-1 and ARIES-2 studies on ambrisentan, an oral selective ET\(_A\)-receptor antagonist, in adult PAH showed improvement of 6 min walk distance (6MWD) during the 12-week study periods (table 3). Subsequently, a retrospective cohort study on paediatric patients with PAH receiving ambrisentan as add-on therapy or transition from bosentan was conducted. In 38 children with PAH, ambrisentan transition or add-on therapy was associated with an improvement of WHO functional class in 31%. AEs such as headache were frequent, but no elevation of liver enzymes was observed.

Macitentan

Macitentan, a novel dual ERA, was developed by modifying the structure of bosentan to increase efficacy and safety. Macitentan has improved receptor binding capacity and has fewer drug–drug interactions compared with bosentan. The SERAPHIN study showed that macitentan significantly reduced a composite end point of morbidity and mortality in patients with PAH and also increased exercise capacity. No liver toxicity was observed; however, a reduction in blood haemoglobin ≤8 g/dL was found in 4.3% of patients receiving 10 mg macitentan (table 3). In contrast to bosentan, macitentan does not appear to lower the plasma levels of sildenafil, although according specific studies are lacking. Today, no data on the use of macitentan in children are available.

Phosphodiesterase inhibitors (PDE-5i)

Sildenafil

Sildenafil is an orally active inhibitor of phosphodiesterase 5 (PDE-5, among other PDEs), inducing vasodilation and exhibiting antiproliferative effects through the NO/cGMP pathway within the pulmonary vasculature. RCTs in adults patients treated with sildenafil have confirmed favourable results on exercise capacity, symptoms and haemodynamics (table 4). STARTS-1 and STARTS-2 are the first paediatric randomised, placebo-controlled RCTs conducted in treatment-naïve children with PAH. In the STARTS-1 trial, children with PAH 1–17 years old (≥8 kg body weight) received low-dose (10 mg), medium-dose (10–40 mg) or high-dose (20–80 mg) sildenafil or placebo orally three times daily for the duration of 16 weeks. There were no statistically significant benefits for each sildenafil dosing group versus placebo in terms of the primary outcome measure, peak oxygen consumption (\(\text{VO}_2\) max.), as assessed by cardiopulmonary exercise testing. However in the subgroup analysis, functional capacity significantly improved in the high-dose sildenafil-group, and PVR index was lowered with medium-dose and high-dose sildenafil. Unfortunately, there was a rise in mortality that was significantly higher in the high-dose sildenafil versus placebo group. These results led to different recommendations by the EMA and the FDA. In 2011, sildenafil received EMA approval for the use in children older than 1 year of age (10 mg three times daily for weight <20 kg, and 20 mg three times daily for weight ≥20 kg). The higher mortality in the high-dose sildenafil group resulted in a warning of the EMA not to use higher doses in 2013. The FDA even released a warning against the (chronic) use of sildenafil in PAH children 1–17 years of age in 2013, which was clarified in 2014 (no contraindication for paediatric use of sildenafil). *Intravenous sildenafil* may play a role in children with persistent pulmonary hypertension of the newborn and postoperatively after congenital heart surgery, however, midsize, sufficiently powered, prospective studies have not been conducted yet.

Tadalafil

Tadalafil, an oral, selective PDE-5 inhibitor with a longer duration of action than sildenafil, was FDA-approved for use in adults with PAH in 2009. RCTs in adults showed an improvement in exercise capacity and quality of life with the administration of tadalafil (table 4). The use of tadalafil in children with PH has recently increased based on the results of a retrospective study (that suggested clinical efficacy and safety in children with PAH and the above-mentioned FDA warning regarding the use of sildenafil). Still, there is no published RCT data on the use of tadalafil in paediatric PAH.

Guanylate cyclase stimulators

Riociguat

Riociguat, an oral agent with dual mode of action that acts in synergy with endogenous NO and also directly stimulates soluble guanylyl cyclase independent of NO availability is another promising therapy. In phase 3 trials on patients with symptomatic PAH (PATENT-1), riociguat therapy led to improved haemodynamics, functional class and time to clinical worsening. Subsequently, a subgroup analysis of patients with persistent/recurrent PAH after repair of CHD (n=35) has been performed on the data sets of the PATENT studies. Riociguat was well tolerated also in these PAH-CHD patients and improvement of clinical outcomes including 6MWD, PVR, WHO FC and NT-pro B-type natriuretic peptide were consistent with the drug effects in the overall population of PATENT-1 (table 4). An ongoing small trial will describe the use of riociguat in paediatric PAH and particularly its safety and potential adverse effects on bone/growth.

Vericiguat

A safety and efficacy phase 2 study on vericiguat (BAY1021189) in adult patients with heart failure and preserved ejection fraction is currently underway (http://www.clinicaltrial.gov; NCT01951638).

Prostacyclin analogues (PCA; prostaglandin I\(_2\) receptor agonists; IP receptor agonists)

Activation of the prostacyclin (PG\(_{I_2}\)) receptor, IP receptor and prostandin EP receptors by PG\(_{I_2}\) analogues induces vasodilation.
in the pulmonary circulation, inhibits proliferation of vascular smooth muscle cells (anti-remodelling) and may have anti-inflammatory effects. Inhaled prostacyclin analogues (iloprost, treprostinil) is used in children with PAH, albeit as an off-label therapy, mostly as a sequential combination therapy with an ERA and/or PDE-5 inhibitor. In children and adolescents, particularly the required frequency of inhalations has a negative impact on patient compliance (6–8 times per 24 h for iloprost, 4–6 times per 24 h for treprostinil). In children with progressive, severe PAH (WHO functional class III or IV) and high predictive risk, inadequate response to combination therapy and/or clinical deterioration, (add-on) initiation of subcutaneous treprostinil, intravenous epoprostenol or intravenous treprostinil should be strongly considered (tables 1, 2, 5 and 6 and figures 2, 3).

Epoprostenol (intravenous infusion)
Epoprostenol was the first PGI₂ analogue and approved by the FDA for treatment of adults with PAH in 1995. Intravenous epoprostenol improves quality of life and survival in children and adults (non-composite primary outcome) with IPAH53 55 56 (table 5). In a retrospective analysis, children with IPAH who were treated with intravenous epoprostenol (n=24; AVT non-responders or those with CCB treatment failure) had a 4-year survival rate of 94%25 and a 10-year freedom from death, transplantation or atrial septostomy (AS) of 37% (13/35).22 Combination of intravenous epoprostenol with oral sildenafil, bosentan or both was reported to result in better survival in an UK observational cohort of children with PAH.37 38 In children, the effective dose of epoprostenol appears to be higher than in adults. Uptitration of epoprostenol over time is common, but excessive doses (>120 ng/kg/min) may lead to high output states that require downtitration (table 2).59 A new, more chemically stable epoprostenol preparation allows up to once-weekly preparation (up to eight cassettes at one time), which may not require ice packs or special mixing liquids (diluents). However, the short half-life of epoprostenol (2–5 min) keeps patients with PAH at very high risk for pulmonary vascular crisis when there is a sudden problem with drug delivery.

Treprostinil (subcutaneous infusion, intravenous infusion, intermittent inhalation)
Treprostinil is the tricyclic benzidine analogue of epoprostenol that is sufficiently stable to be given continuously per intravenous or subcutaneous route at room temperature in patients with PAH. The FDA approved treprostinil for subcutaneous use in 2002, for intravenous application in 2004 and for inhalative administration in 2009 (for adult PAH RCT results, see table 5). Subcutaneous use of continuous treprostinil via mini pumps is often associated with side pain but allows patients to live free of central venous catheters that inhere the possible complications of line infection, sudden occlusion or extravasal dislocation. Add-on subcutaneous treprostinil has been studied in eight children with PAH at an average dose of 40 ng/kg/min and tolerable side effects.60 Highly efficient intravenous treprostinil can be given by continuous infusion through small, subcutaneous or external pumps, is mixed easily and has a much longer half-life (approximately 4 h) than epoprostenol (table 2). In adults with PAH, the dose of intravenous treprostinil appears to be 2–3 times higher than the dose of epoprostenol.61 A recent retrospective analysis of inhaled treprostinil administration in 29 children with PAH (3–9 breaths, 6 µg/breath, four times daily) showed promising results with an improvement in WHO functional class and 6MWD.62

Iloprost (intermittent inhalation)
The PGI₂ analogue iloprost was approved for inhalative treatment of adults with PAH in the USA in 2004. Iloprost can be delivered by simple nebulisation in small children and by adaptive aerosol delivery in older children, adolescents and adults. Because of its short half-life, iloprost should be administered 6–9 times in 12–18 h (every 2–3 h, daily), requiring patient cooperation and solid patient compliance (tables 2 and 5).63 In mid-2015, a new chip and higher concentrated ampoules were released in Europe, so that the inhalation times for iloprost can now be reduced from 10–15 to 5–8 min. The major advantage of inhaled prostacyclin are pulmonary vasodilation, and probably anti-inflammation and anti-remodelling effects, with usually little influence on systemic blood pressure. Headaches, jaw pain and airway reactivity64 may occur at the beginning of iloprost therapy, so that preceding pulmonary function tests are recommended. Inhaled iloprost has been studied in combination with sildenafil65 and bosentan66 in adults, but phase 2/3 studies in children are lacking (table 5).

Beraprost (oral)
Beraprost is a prostacyclin analogue with a short half-life (40 min) that is not available in Europe and the USA, but approved in its long-acting form for PAH therapy in Japan and South Korea.67 While short-term effects of beraprost have been described in adult PAH trials, the efficacy seemed to fade with longer treatment,68 69 and paediatric data on the efficacy of beraprost are limited to case reports.

Selexipag (oral)
Selexipag is an oral selective prostacyclin receptor (IP receptor) agonist. Its high functional selectivity for the IP receptor may help minimise gastric side effects. In a pilot RCT in patients with PAH receiving stable ERA and/or PDE-5 inhibitor therapy, selexipag reduced PVR after 17 weeks compared with placebo.70 In the large PAH, event-driven, randomised, double-blind, placebo-controlled phase 3 trial on the efficacy of selexipag on the first morbidity and mortality event (GRIPHON; n=1156),71 selexipag significantly reduced the risk of morbidity/mortality events (composite primary end point: death from any cause or a complication related to PAH up to the end of the treatment period) versus placebo (log-rank p<0.0001 by 40% (HR 0.60; 99% CI 0.46 to 0.78; p<0.001). A primary end point event occurred in 397 patients – 41.6% of those in the placebo group and 27.0% of those in the selexipag group. Disease progression and hospitalisation accounted for 81.9% of the events. There was no significant difference in mortality between the two study groups.71 Oral selexipag may enable earlier combination drug therapy targeting the three-molecular pathways of PAH by combining oral dosing with higher IP receptor selectivity. A drug trial on the use of selexipag in children with PAH is expected to start soon.

Medication used in the intensive care unit (milrinone, levosimendan, inhaled nitric oxide)
Milrinone and levosimendan are lusitropic, positive inotropic agents typically considered for use in patients with PAH in WHO functional class IV. Milrinone, levosimendan and the potent local vasodilator, inhaled nitric oxide, are discussed in a separate article on the treatment of acute PAH in the intensive care unit.

Combination pharmacotherapy in paediatric PAH
Children who deteriorate on either ERA or PDE-5 inhibitor agents may benefit from early dual or triple combination
therapy. Combination therapy (early combination or rapid sequence/add-on) versus monotherapy has not been studied in children yet. Prospective studies are needed to help establish any solid recommendations for combination therapy in children with PH. A modified algorithm on combination therapy based on the adult 2015 ESC/ERS guidelines for PH12 is given in figure 3.

Characteristics and major findings of RCTs testing upfront combination therapy in adult PAH are shown in table 6.

Drug interactions
The potentially significant drug interactions with PAH-targeted therapies are listed in table 7.

Experimental compounds and strategies
Because of the lack of any validated prospective paediatric data or even drug approval in childhood, the above-mentioned compounds macitentan, tadalafil, riociguat, vericiguat, beraprost and selexipag must be considered experimental paediatric PH pharmacotherapy ('compassionate use') until convincing clinical data become available. Venoarterial-ECMO as bridge to lung transplantation or bridge to recovery in severe PAH is discussed in a separate article of the European Paediatric Pulmonary Vascular Disease Network.1 A limited number of studies on the value of balloon atrial septostomy (AS) and Potts shunt in advanced paediatric PAH are available and will be discussed in the following section.

Catheter-based and surgical therapy of advanced PAH
To avoid overt right heart failure in patients with severe and refractory PAH, a right-to-left shunt can be created with the aim

Table 7: Potentially significant drug interactions with PAH targeted therapies

<table>
<thead>
<tr>
<th>PAH drug</th>
<th>Mechanism of interaction</th>
<th>Interacting drug</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrisentan</td>
<td>?</td>
<td>Cyclosporine, ketoconazole</td>
<td>Caution is required in the coadministration of ambrisentan with ketoconazole and cyclosporine</td>
</tr>
<tr>
<td>Bosentan</td>
<td>CYP3A4 inducer</td>
<td>Sildenafil</td>
<td>Sildenafil levels fall 50%; bosentan levels increase 50%. May not require dose adjustments of either drug</td>
</tr>
<tr>
<td></td>
<td>CYP3A4 substrate</td>
<td>Cyclosporine</td>
<td>Cyclosporine levels fall 50%; bosentan levels increase fourfold. Combination contraindicated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erythromycin</td>
<td>Bosentan levels increase. May not require dose adjustment of bosentan during a short course</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ketoconazole</td>
<td>Bosentan levels increase twofold</td>
</tr>
<tr>
<td></td>
<td>CYP3A4 substrate+bile salt pump inhibitor</td>
<td>Gilbenclamide</td>
<td>Increase incidence of elevated aminotransferases. Potential decrease of hypoglycaemic effect of gilbenclamide Combination contraindicated</td>
</tr>
<tr>
<td></td>
<td>CYP2C9 and CYP3A4 substrate</td>
<td>Fluconazole, amiodarone</td>
<td>Bosentan levels increase considerably. Combination contraindicated</td>
</tr>
<tr>
<td>CYP2C9 and CYP3A4 inducers</td>
<td>Rifampicin, phenytoin</td>
<td>Bosentan levels decrease by 58%. Need for dose adjustment uncertain</td>
<td></td>
</tr>
<tr>
<td>CYP2C9 inducer</td>
<td>HMG CoA reductase inhibitors</td>
<td>Simvastatin levels reduce 50%; similar effects likely with atorvastatin. Cholesterol level should be monitored</td>
<td></td>
</tr>
<tr>
<td>CYP2C9 inducer</td>
<td>Warfarin</td>
<td>Increases warfarin metabolism, may need to adjust warfarin dose. Intensified monitoring of warfarin recommended following initiation but dose adjustment usually unnecessary</td>
<td></td>
</tr>
<tr>
<td>CYP2C9 and CYP3A4 inducers</td>
<td>Hormonal contraceptives</td>
<td>Hormone levels decrease. Contraception unreliable</td>
<td></td>
</tr>
</tbody>
</table>

Macitentan	Selexipag	To be determined	
Sildenafil	CYP3A4 substrate	Bosentan	Sildenafil levels fall 50%; bosentan levels increase 50%. May not require dose adjustments of either drug
	CYP3A4 substrate	HMG CoA reductase inhibitors	May increase simvastatin/atorvastatin levels through competition for metabolism. Sildenafil levels may increase. Possible increased risk of rhabdomyolysis
	CYP3A4 substrate	HIV protease inhibitors	Ritonavir and saquinavir increase sildenafil levels markedly
	CYP3A4 inducer	Phenytoin	Sildenafil level may fall
	CYP3A4 substrate	Erythromycin	Sildenafil levels increase. May not require dose adjustment for a short course
	CYP3A4 substrate	Ketoconazole	Sildenafil levels increase. May not require dose adjustment
	CYP3A4 substrate	Cimetidine	Sildenafil levels increase. May not require dose adjustment
	cGMP	Nitrates	Profound systemic hypotension, combination contraindicated
		Nicorandil	Profound systemic hypotension
		Molsidomine	Profound systemic hypotension
Tadalafil	CYP3A4 substrate	Bosentan	Tadalafil exposure decreases by 42%, no significant changes in bosentan levels.44 May not require dose adjustment
	cGMP	Nitrates	Profound systemic hypotension, combination contraindicated
		Nicorandil	Profound systemic hypotension
Riociguat	cGMP	Sildenafil	Hypotension, severe side effects, combination contraindicated

Adapted from National Pulmonary Hypertension Centres of the UK and Ireland.87 Note that most of the listed RCT data were derived from studies in adults with PAH. Healthcare providers must obtain valid information on the approval of any of the listed medications for use in paediatric PAH in the according country.87

Atrial septostomy

Atrial septostomy (AS) is the most frequently applied interventional technique that is used as a palliative therapy in the management of patients with advanced PH and failing RV when medical therapy has failed. AS improves symptoms and quality of life in paediatric PAH and may serve as bridge to lung transplantation. Following puncture of the interatrial septum in Brockenbrough technique, the defect is stepwise balloon-dilated until the predetermined diameter is achieved or the arterial oxygen saturation has dropped 10% from baseline. As spontaneous closure of the created defect occurs in almost 10%, the procedure may be repeated and/or a stent device can be implanted to keep the communication patent.

According to a 2009 worldwide retrospective analysis of 223 patients including a significant number of children, procedure-related mortality was very high (7.1% at 24 h and 14.8% at 1 month), while immediate and long-term haemodynamic response including survival (available in 128 patients) was encouraging with a median survival of 60 months. Treatment of PAH associated with CHD is discussed in a separate article of the European Paediatric PVD Network.

Potts shunt (LPA-DAO)

This surgical procedure implies the creation of a connection between the left pulmonary artery (LPA) and the descending aorta (DAO), which allows right-to-left shunting, similarly to a patient with a patent ductus arteriosus-related Eisenmenger syndrome. The use of a Potts (LPA-DAO) shunt in suprasystemic PH is considered advantageous compared with AS as it provides high oxygen saturated blood for the coronary arteries and the central nervous system and only causes desaturation of the lower body. In addition, the risk of fatal paradoxical embolisms may be lower compared with a connection on the atrial level. Another benefit arises from its effect on haemodynamics by the relief of RV pressure overload in systole and, in part, also in diastole with a subsequent reduction in shifting of the interventricular septum towards the LV with an improvement in systolic and diastolic LV performance. The connection between the pulmonary artery and the descending aorta can be achieved either by a direct side-by-side anastomosis or by using a synthetic graft tube/prosthesis, which should have the size of the descending aorta to allow sufficient decompression of the RV. A run-off through the Potts shunt with decreased pulmonary perfusion and extreme desaturation of the lower body with subsequent undersupply of the myocardium and the brain should be avoided.

Given that the experience with the Potts shunt procedure is nearly exclusively available in children, these data cannot be extrapolated to severely ill adults, which may have a considerably higher periprocedural risk. The procedure may be considered in patients with suprasystemic PH refractory to any medical treatment including combined therapy presenting in New York Heart Association/WHO functional class IV.

The largest series published by Baruteau and colleagues consisted of 24 children with drug-refractory PAH in which a permanent Potts shunt was created (19 surgical LPA-DAO, 6 via stenting of a persistent ductus arteriosus (PDA)). Six patients experienced severe postoperative complications and three early deaths relating to low cardiac output occurred. After a median follow-up of 2.1 years, the 21 survivors showed persistent improvement in functional capacities, and none of the patients had syncope or overt RV failure. These favourable long-term results suggest that creation of a Potts shunt can be a valuable alternative, or bridge to bilateral lung transplantation, at least in selected cases.

Recently, several case series demonstrated the feasibility of the pure catheter-based interventional implementation of the connection between the left PA and the descending aorta. The obviously most elegant method is the implantation of a stent in a still patent PDA, which is not infrequently present in infants and young children. This procedure is an established method in CHD with duct-dependent circulation and can be established with considerable low periprocedural risk in experienced centres. Currently, the interventional de novo creation of a LPA-DAO connection with a covered stent from the LPA or DAO side has been shown to be feasible but currently must be considered a high-risk procedure in patients with end-stage PAH who are too sick to undergo surgery.

Pulmonary artery denervation

The rationale for the pulmonary artery denervation (PADN) procedure is based on the observation that baroreceptors and sympathetic nerve fibres are localised in or near the bifurcation of the main pulmonary artery. Two small pilot studies demonstrated some benefits of PADN on exercise capacity and symptoms of patients with adult PAH at 3 and 12 months follow-up. Data on the safety and efficacy of PADN in children with PAH are lacking.

CHALLENGES IN CLINICAL STUDIES OF PAEDIATRIC PAH

1. Identification of valid treatment goals in paediatric PAH.
2. Regulatory requirements, patient recruitment and retention, clinical trial end points for paediatric PAH trials.
3. Need for interdisciplinary, international PVD networks to conduct multicentre studies and to establish registries.

4. Initiation of a prospective multicenter study on early combination therapy in paediatric PH including a comparative group (early combined dual or triple combination, rapid sequence of two agents).

5. When and how to perform a Potts shunt procedure for advanced PAH (surgery, intervention?) and how to combine this pressure-unloading shunt with combination pharmacotherapy?

6. Initiation of investigator-initiated pilot and/or industry-sponsored phase 2–4 studies on the safety and efficacy of new compounds recently published/approved for adult PAH (macitentan, riociguat, selexipag, treprostinil).

Author affiliations
1Department of Paediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
2Division of Paediatric Cardiology, Children’s University Hospital Ulm, Ulm, Germany

Acknowledgements The authors thank Damien Bonnet, Paris, for critically reviewing this manuscript and this manuscript, and CengizTamak, Hannover, for editorial assistance.

Funding GH currently receives grant support from the German Research Foundation (DFG; HA 4348/2-1), Kinderherzen e.V. (W-H-001-2014), and Stiftung Kinderherzen (25116-13-011). CA currently receives grant funding from Stiftung Kinderherzen (2511-10-13-001) and Behring-Röntgen-Stiftung (59-0018).

This Heart supplement was produced with support from an unrestricted educational grant from Actelion Pharmaceuticals GmbH, Bayer Pharma AG, and Pfizer Inc. None of these organisations had any influence on the composition of the writing group or the content of the articles published in this supplement. Open Access publication of this article was sponsored by Actelion Pharmaceuticals Germany GmbH.

Competing interests GH and CA declare no conflict of interest.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
Pulmonary vascular disease

Treatment of children with pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

Georg Hansmann and Christian Apitz

Heart 2016 102: ii67-ii85
doi: 10.1136/heartjnl-2015-309103

Updated information and services can be found at:
http://heart.bmj.com/content/102/Suppl_2/ii67

These include:

References
This article cites 104 articles, 34 of which you can access for free at:
http://heart.bmj.com/content/102/Suppl_2/ii67#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Open access (269)
- Hypertension (3004)
- Drugs: cardiovascular system (8839)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/