Hæmodynamic Changes During Continuous Exercise

EDGAR SOWTON AND FELIX BURKART*

From the Institute of Cardiology, 35 Wimpole Street, London W.1, and National Heart Hospital, London W.1

Since many cardiac patients complain of symptoms only during exercise, it seems reasonable for an exercise test to be included in the assessment of their disability. The timing of measurements taken during the exercise period is obviously of importance and it is common practice to assume a "steady-state" after the initial three or four minutes. Readings obtained during this "steady-state" are then accepted as control values for comparison with later measurements made, for example, after the patient has been given 100 per cent oxygen to breathe for several minutes. Changes in the control values as exercise is prolonged have been studied only infrequently, and represent an obvious source of error in assessing the effects of oxygen or other drugs. In this study we report the results obtained when patients continued steady exercise for at least 30 minutes with no drugs being given.

Subjects and Methods

Seven symptom-free patients with moderately loud ejection systolic murmurs in the absence of depressed sternum were investigated (Table I); two of these patients (Nos. 6 and 7) were known to have mild pulmonary stenosis and were having routine follow-up investigations. The eventual diagnosis in the other five patients was of a normal heart. Since all subjects, including those with pulmonary valve gradients, behaved in an identical fashion, the results have been considered together.

The exercise test was in all cases carried out as an outpatient procedure; a fine nylon catheter† was floated into the pulmonary artery from an antecubital vein, the position being checked by a pressure trace displayed on an oscilloscope. One millimetre outside diameter teflon tubing‡ was introduced into the brachial artery by the Seldinger technique and was advanced into the aorta.

Received March 7, 1967.

* In receipt of a grant from the Swiss National Fund.
Present address: Cardiologischer, Oberarzt, Buegospital, Basle, Switzerland.
† No. FG3, Portland Plastics, Hythe, Kent, England.
‡ No. 60/100, A.B. Stille-Werners, Stockholm, Sweden.

These "micro-catheters" enable investigations to be performed on out-patients with no need for x-ray screening. The procedures carry very little risk and the only complications in our laboratory over several years have been slight bruising around the arterial puncture and the occasional provocation of ectopic beats when the fine nylon catheter passes through the right ventricle.

Consolidated Electrodynamics strain gauges (type 4–326-L212) were used, and pressures and electrocardiograms were recorded on a Sanborn direct writer. Blood oxygen content was estimated with a Brinkman haemoreflector calibrated against Van Slyke analyses. Oxygen uptake and carbon dioxide production was recorded every eight seconds at rest and during exercise by means of a Junkalor "Spirolyt" paramagnetic oxygen analyser which has been fully described previously (Barold, Burkart, and Sowton, 1966), and cardiac output was calculated by the Fick principle. Left ventricular work was calculated as the product of cardiac output and mean aortic ejection pressure. Tension time index (Sarnoff et al., 1958) was calculated as the product of the mean aortic ejection pressure, the heart rate, and the ejection time measured from the aortic pressure trace. Total peripheral vascular resistance and total pulmonary vascular resistance were calculated from the cardiac output and the mean aortic and pulmonary artery pressures respectively.

Table I

<table>
<thead>
<tr>
<th>Subject</th>
<th>Sex</th>
<th>Age (yr.)</th>
<th>Height (cm.)</th>
<th>Weight (kg.)</th>
<th>Hb (g./100 ml.)</th>
<th>Erect, resting RV–PA gradient (mm. Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>21</td>
<td>176</td>
<td>68</td>
<td>16·5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>52</td>
<td>173</td>
<td>77·5</td>
<td>15·0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>13</td>
<td>149</td>
<td>43</td>
<td>14·5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>25</td>
<td>183</td>
<td>68·5</td>
<td>16·3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>24</td>
<td>177</td>
<td>73</td>
<td>16·2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>16</td>
<td>160</td>
<td>60</td>
<td>13·8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>20</td>
<td>165</td>
<td>63</td>
<td>14·0</td>
<td>40</td>
</tr>
</tbody>
</table>

Subjects 6 and 7 were known to have mild pulmonary valve stenosis. Patients 4 and 5 were judged to have normal hearts.

Haemodynamic Changes During Continuous Exercise

Table II

Mean values for the whole group of subjects when supine at rest, erect at rest, and during prolonged exercise on a bicycle ergometer at 300 kpm./min.

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>Position</th>
<th>Time (min.) since onset of exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Supine</td>
</tr>
<tr>
<td>Aortic mean pressure (mm. Hg)</td>
<td>5</td>
<td>93</td>
</tr>
<tr>
<td>Pulmonary artery mean pressure (mm. Hg)</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Heart rate (beats/min.)</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>Cardiac output (l/min.)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Stroke volume</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>LV work/min. (kg.m.)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tension time index mm. Hg (sec./min.)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>AV-O\textsubscript{2}diff. (vol./100 ml.)</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Oxygen uptake (ml./min.)</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Total peripheral resistance units</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Total pulmonary resistance units</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Pressures and electrocardiograms were recorded at rest in both supine and erect positions and also every two to three minutes during exercise on a bicycle ergometer (Holmgren and Mattsson, 1954); after 15 minutes of exercise, measurements were made every five minutes for a total of 30 to 40 minutes. Blood samples were taken at rest in both positions and during exercise every 3 to 4 minutes for the first 15 minutes, and then at 20, 30, and 40 minutes. For all subjects the exercise level remained unchanged at 300 kpm./min. throughout the investigation. One patient (No. 2) with a normal heart was unable to continue exercise beyond 18 minutes because of pain in a leg due to an old injury; his results have not been included in the mean values but the responses of all parameters were qualitatively the same as for the other six patients. In one 13-year-old boy (No. 3) no arterial catheter was introduced and only pulmonary artery pressure and heart rate figures are available. The remaining five patients had an average age of 21 years (range 16–25). One of the two patients previously diagnosed as having pulmonary stenosis had right ventricular-pulmonary artery gradients of 40 mm. Hg at rest and on exercise, and the other had gradients of only 8 mm. Hg at rest and 5 mm. Hg on effort. Two of the patients judged to have normal hearts had small right ventricular to pulmonary artery gradients of up to 10 mm. Hg on exercise.

The zero level for pressure recordings in the supine position was the mid-chest, and the zero level in the upright position was the point of insertion of the fourth rib into the sternum.

Results

The detailed results are given in Table II which presents the mean figures for the whole group.

Aortic Pressure. When the patients adopted the erect position the mean pressure increased by 10 mm. Hg; during exercise it rose abruptly to reach a peak level two minutes after the onset of exercise and then fell slowly to reach the pre-exercise level after 30 minutes (Fig.).

Pulmonary Artery Pressure. The pressure fell by 3 mm. Hg when the patients adopted the erect position. During exercise the peak level was reached within two minutes but the pressure then slowly fell to approach its original value after 30 minutes, though by this time it was still slightly raised above the pre-exercise level.

Heart Rate. The mean resting level was 89 beats a minute in the supine position and this high figure presumably reflects some apprehension on the part of the subjects. The mean level increased to 100 beats a minute when the patients were sitting at rest on the ergometer; during exercise the heart rate increased fairly rapidly to 137 beats a minute after 8 minutes but then continued to rise very slowly to a final level of 146 beats a minute at the end of the exercise period (Fig.).

Cardiac Output. The mean resting cardiac output in the supine position was 6.9 litres a minute and this fell to 5.2 litres a minute in the erect position. During exercise, the peak value of 10.9 litres a minute was reached within two minutes and the cardiac output stayed nearly constant with a slight tendency to fall towards the end of the exercise test.

Stroke Volume. The mean stroke volume in the supine position was 78 ml. and this fell to 52 ml. in the erect position. After two minutes of exercise a peak value of 89 ml. was reached, but after eight minutes the stroke volume had fallen to the same value as in the supine resting position; a further decrease continued during the next 25 minutes to a final level of 73 ml. (Fig.).

Left Ventricular Work. The left ventricular work fell by 14.5 per cent when the subjects assumed the erect position. It then increased considerably.

Downloaded from http://heart.bmj.com/ on June 15, 2017 - Published by group.bmj.com
with exercise to reach a peak after about two minutes, with a slow decline following during the whole period of exercise. If values obtained during the erect position only are considered, the left ventricular work increased during exercise at 300 kpm./min. to 230 per cent of the resting value with reduction to 196 per cent of the resting value after 30 minutes of exercise.

Tension Time Index. This index increased by about 12 per cent when the patients assumed the erect position. It rapidly increased further at the onset of exercise, with the five-minute reading producing the highest levels; there was then a slow reduction throughout the whole period of exercise to a final level which was 19 per cent higher than the erect resting value.

Arteriovenous Oxygen Difference. This increased from a value of 46·1 ml./100 ml. to 59·1 ml./100 ml., with the change in posture. During exercise, there was a rapid increase which was maximum in the five-minute measurements; there was then a slow reduction throughout the remaining exercise period.

Oxygen Uptake. The oxygen uptake increased rapidly with exercise to reach a maximum between three and four minutes after the onset of exercise. The level then remained approximately constant for the remaining exercise period.

Total Peripheral Resistance. The resistance increased by about 50 per cent with the change to the upright position. It fell rapidly with exercise and had approximately halved within two minutes; it then continued to decrease slowly throughout the exercise period.

Total Pulmonary Resistance. This increased only slightly in the erect position but fell abruptly within the first two minutes of exercise. There was then a slow continued decrease, so that after 30 minutes of exercise the resistance averaged 60 per cent of the initial value.

DISCUSSION

The alteration in posture from lying supine to sitting erect on the bicycle ergometer was accompanied by a mean fall in cardiac output of 25 per
Hæmodynamic Changes During Continuous Exercise

In six symptom-free young subjects an alteration in posture from supine to erect resulted in a 25 per cent fall of cardiac output and a 33 per cent fall in stroke volume.

On exercise at 300 kpm./minute there was an initial rise in aortic and pulmonary pressure, but
these then fell progressively to approach the erect resting level after thirty minutes of continuous exercise. The heart rate increased slowly throughout the period of exercise, but the cardiac output and oxygen uptake remained almost unchanged once the steady state had been reached.

Cardiac work and tension time index decreased as exercise was prolonged.

REFERENCES

Haemodynamic changes during continuous exercise.

E Sowton and F Burkart

Br Heart J 1967 29: 770-774
doi: 10.1136/hrt.29.5.770

Updated information and services can be found at:
http://heart.bmj.com/content/29/5/770.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/