Coronary Artery Fistula

R. J. BARNES, ANTHONY C. S. CHEUNG, AND RAYMOND W. Y. WU

From Queen Elizabeth Hospital, Hong Kong Government

The diagnosis of coronary artery fistula was difficult to confirm and assess until the advent of cardiac catheterization and selective angiography. The first description of this condition was in 1865 by Krause. Subsequent early reports include those by Cayla (1885), Abbott (1906), Trevor (1911), Blakeley (1918), Halpert (1930), and Harris (1937). From 1955 onwards there were increasing numbers of reports and by 1966, Dedichen, Skalleberg, and Cappelen collected 98 published cases. The importance of this anomaly lies in the fact that it must be considered in the differential diagnosis of continuous murmurs over the praecordium, and in the fact that surgical treatment is more generally available. This paper describes three patients with coronary artery fistula, and discusses the diagnosis and indications for operation.

Case Reports

Case 1. A woman, aged 43, complained of dyspnoea and palpitations on exertion for 8 months in 1961. She did not have nocturnal dyspnoea, orthopnoea, or swelling of ankles. She had given birth to her seventh baby without complications 1 year previously. The past history and family history were not relevant. Physical examination revealed a well-nourished woman in good general condition. Blood pressure was 130/75 mm. Hg, radial pulse 82 a minute and regular. A loud harsh systolic murmur, maximal at the right parasternal border, was the only positive physical finding, though x-ray examination of the chest showed generalized enlargement of the heart. The electrocardiogram was within normal limits.

She was closely and regularly followed up, and in 1964 a diastolic murmur became audible maximally at the aortic area. The phonocardiogram (Fig. 1) depicts this finding. The murmur was transmitted along both sternal borders. There was no collapsing pulse or Corrigan's sign, and the blood pressure was unchanged.

In 1967, a systolic thrill was palpable over the aortic area, and the jugular venous pressure was noted to have risen to half way up the neck, with the patient at 45°.

Cardiac catheterization was performed, which showed a left-to-right shunt of 2.7 l./min. at atrial level. The right ventricular pressure was 33/5–9 mm. Hg and pulmonary artery pressure 33/15 mm. Hg. The cardiac output was 4.5 l./min., and the pulmonary vascular resistance 1.6 units. An aortic angiogram (Fig. 2) showed a large tortuous right coronary artery which drained into the right atrium. A Master two-step test did not show any evidence of myocardial ischaemia.

Received July 30, 1968.

Fig. 1.—Phonocardiogram of Case 1. The diastolic murmur is diminuendo and not as loud as the systolic murmur.
Case 2. A woman, aged 28, was told by a doctor when she was 11 years of age that she had heart disease. There was never any history of chest pain, neither were there any symptoms suggestive of heart failure. She had 3 children, the youngest of whom was 1 year; there had been no complications during pregnancy. On physical examination the patient was found to have collapsing pulse and Corrigan’s sign, though the blood pressure was 120/65 mm. Hg. The apex beat was situated at the 5th intercostal space on the mid-clavicular line. A systolic and diastolic thrill was easily palpable over the apex, but was maximal over the left sternal edge at the level of the 4th intercostal space. The murmur was maximal at the 4th left sternal border, and was continuous in character (Fig. 3). Other systems were normal. The resting electrocardiogram and the x-ray examination of the chest were within normal limits.

Cardiac catheterization revealed a left-to-right shunt of 4·0 l./min. at ventricular level. The pressures in the right ventricle and pulmonary artery were 30/3 and 25/5
mm. Hg, respectively. Cardiac output was 4·6 l./min., and the pulmonary vascular resistance 0·8 units. An aortogram showed the presence of an abnormal right coronary artery (Fig. 6), but the left coronary artery was not visualized.

DISCUSSION

Many classifications of coronary artery fistulae have been proposed to aid the understanding of this condition from the embryological, anatomical, and functional points of view (Williams, Kent, and Edwards, 1951; Edwards, 1958; Edwards, Gladding, and Weir, 1958; Steinberg, Baldwin, and Dotter, 1958; Swan et al., 1959; Muir, 1960; Upshaw, 1962; Dedichen et al., 1966; Effler et al., 1967). The classification based on haemodynamics, advocated by Dedichen et al. (1966), is utilized for the sake of simplicity. Two types of communication between a coronary artery and a cardiac chamber are recognized. The first type empties into the pulmonary vein or the left side of the heart, and cannot be detected by cardiac catheterization. In the second type, the coronary artery communicates with the pulmonary artery or the right side of the heart, and the flow can be calculated from right heart catheterization. The cases reported here are of the latter category.
Clinical Features. Many reported cases were symptomless, the patient presenting with a continuous murmur over the praecordium. The site of maximal intensity of the murmur depends on the chamber with which the fistula communicates (Neufeld et al., 1961), and is commonly associated with a thrill. Case 1 had a systolic thrill at the right sternal border, where the systolic and diastolic murmurs were heard maximally, and did, in fact, have a right coronary artery fistula draining into the right atrium.

Case 2 exhibited a thrill and continuous murmur
Coronary Artery Fistula

over the left sternal border at the level of the 4th left intercostal space, and was shown to have an abnormal anterior descending branch of the left coronary artery draining into the right ventricle. In Case 3, the thrill and continuous murmur were maximal at the right 3rd intercostal space near the sternum, and the communication was from the right coronary artery into the right ventricle. Gasul et al. (1960) observed that the diastolic component was louder than the systolic component in fistulae communicating into the right ventricle. This seems to be a useful point in the differential diagnosis of patent ductus arteriosus in which, typically, there is systolic accentuation of the murmur. This feature is seen in the phonocardiogram (Fig. 3 and 5) of Cases 2 and 3, and in one of the patients described by Sanger, Taylor, and Robicsek (1959). Case 1 appeared to have had only a systolic murmur when first seen in 1961. She had been examined repeatedly, but it was not until 1964 that a diastolic murmur was detected. Björck and Crafoord (1947), Paul, Sweet, and White (1949), and Davison, McCracken, and McIlveen (1955) also described murmurs which changed in character, developing into a continuous murmur at a later date. No explanation is advanced for this phenomenon, as serial haemodynamic studies have not been performed in these patients.

In all suspected cases, the diagnosis should be confirmed by aortogram and cardiac catheterization. The aortogram usually shows a tortuous and dilated coronary artery which may be aneurysmal in size (Case 1); but there have been cases in which the coronary artery was not enlarged, or only minimally so (Björck and Crafoord, 1947; Essenberg, 1950; Neufeld et al., 1961). The left coronary artery in Case 3 failed to opacify in the aortogram, and selective coronary angiography is, therefore, required to demonstrate the presence or absence of the vessel. This should be performed just before operation.

Cardiac catheterization can often localize the level of the shunt, and provide information on the flow. In the majority of cases the shunt is moderate or small, as it was in Cases 1 and 3 in the present report (2.7 and 0.7 l./min., respectively), but severe shunts of 6.4 and 8.7 l./min./m.² have been reported by Gasul et al. (1960), and Neufeld et al. (1961), respectively. Case 2 had a shunt of 4.0 l./min.

The x-ray examination of the chest and the electrocardiogram may show various abnormalities depending mostly on the degree of the shunt and the consequent hypertrophy of the ventricle, but the findings are not specific for coronary artery fistula.

Complications. Though many reported cases were symptomless, this condition does not appear to be as benign as some authors have suggested. The occurrence of congestive cardiac failure has been documented (Davison et al., 1955; Steinberg et al., 1958; Neufeld et al., 1961; Honey, 1964; Berman et al., 1965), and may even occur in infancy (Sanger et al., 1959; Cooley and Ellis, 1962; Braudo et al., 1962). One patient survived to the age of 80 before the onset of heart failure (Colbeck and Shaw, 1954). This shows the wide range of morbidity and mortality of coronary artery fistulae.

Angina pectoris might be expected to be a common symptom since there is a run-off of blood from the coronary artery and its branches, thus depriving the myocardium of part of its blood supply. But this has not been noted as frequently as might be expected. Four patients had electrocardiographic findings suggestive of ischaemic heart disease (Knoeblich and Rawson, 1956; Valdivia, Rowe, and Angevine, 1957; Edwards et al., 1958; Sabiston et al., 1963), and 3 patients had angina pectoris (Abbott, Rivarola, and Logue, 1961; Neufeld et al., 1961; Dedichen et al., 1966). The Master two-step test was performed on the present patients and the results were negative. Subacute bacterial endocarditis has been reported by Jacobi and Heinrich (1933), Sanger et al. (1959), and Serratto and Kedzi (1965), and pulmonary hypertension by Davison et al. (1955), Neill and Mounsey (1958), and Bosher et al. (1959). Haemopericardium due to a coronary artery fistula complicated by rupture of the coronary sinus was reported by Habermann, Howard, and Johnson (1963).

Operative Treatment. There has been a relatively large number of patients who were subjected to surgical treatment (Sondergaard, 1955; Davis et al., 1956; Mozen, 1956; Edwards et al., 1958; Neill and Mounsey, 1958; Bosher et al., 1959; Grob and Kolb, 1959; Kittle, 1959; Sanger et al., 1959; Swan et al., 1959; Gasul et al., 1959; Zuhdi et al., 1960; Carmichael and Davidson, 1961; Dubost, Chevrier, and Metianu, 1961; Engle et al., 1961; McIntosh et al., 1961; Neufeld et al., 1961; Barcia et al., 1962; Braudo et al., 1962; Cooley and Ellis, 1962; Papaioannou et al., 1962; Effler and Welti, 1963), and the results appear to be uniformly encouraging. Most operations were performed under conventional anaesthesia, the abnormal coronary artery being cut and/or ligated, after having been clamped for a few minutes while the effect of occlusion on the heart was observed. However, in cases of circoid aneurysm, it may be difficult or impossible to perform simple ligation and excision. Some patients were not ligated at operation for fear of jeopardizing the coronary circulation or because the shunt could not be obliterated by clamping, or by
pressure on the vessel (Paul et al., 1949; Gross, 1949; Walther et al., 1957; Dedichen et al., 1966). Extracorporeal circulation should be employed for such patients, and the feasibility of operation can then be assessed more accurately.

CONCLUSION

From the above it appears that a significant number of complications may occur in patients with coronary artery fistulae, and though many may be symptomless at the time of examination, obliteration of the communication is desirable, particularly in view of the low operative mortality. In uncomplicated cases operation may be delayed. The availability of an extracorporeal circulation is highly desirable, particularly in the presence of aneurysmal coronary arteries.

SUMMARY

Three cases of coronary artery fistula are described, and the diagnostic features of the condition are discussed. Complications appear to be not as infrequent as was suggested by some authors, and this is discussed in the light of indications for operation. Cardiac bypass is recommended particularly in the presence of aneurysmal or circoid coronary artery.

We wish to thank Dr. J. Han for the aortograms and Drs. R. B. Bernardo, H. J. Yew, and S. M. Kong for their part in the cardiac catheterization.

REFERENCES

Coronary Artery Fistula

