Familial pulmonary hypertension
Evidence of autosomal dominant inheritance

Peter Thompson1 and Colin McRae
From the Cardiac Department, The Royal Melbourne Hospital, Melbourne, Victoria, Australia

A patient with primary pulmonary hypertension is the fourth member of a family proven to have the disease. The patient's father married twice; the disease appeared in both families, and was transmitted through two generations. Multiple genetic and environmental factors may result in pulmonary hypertension, but the distribution of cases in this family and in others reported is consistent with the autosomal dominant inheritance of a single genetic trait.

Since its documentation by Clarke et al. in 1927, there have been 13 reports of the familial occurrence of primary pulmonary hypertension (Rogge, Mishkin, and Genovese, 1966; Hood et al., 1968). The mode of inheritance has not been defined because of difficulty in distinguishing primary pulmonary hypertension from pulmonary hypertension secondary to thromboembolic disease and other causes; thus, proven cases in more than one generation are rare. The largest family reported is that of Lange (1948) who found that 82 members of a family had a history of dyspnoea and cyanosis; 42 members were personally examined, and many were found to have the clinical features of pulmonary hypertension, but no catheterization studies were performed. No definite conclusion could be reached as to the mode of inheritance in the suspected cases. Melmon and Braunwald (1963) reconstructed an extensive pedigree of a family with two proven and three suspected cases; they concluded that the mode of inheritance was dominant. Hood et al. (1968) studied another family with three affected sisters and concluded that inheritance was autosomal recessive; they reviewed other published family trees and suggested that there might be two different modes of inheritance.

We have recently studied an affected member of the family reported by Fleming (1960), in which the father married twice. Appearance of the disease in both his families provides unique evidence of a dominant mode of inheritance.

Case report
The patient, aged 51, was admitted to Royal Melbourne Hospital in June 1969. For six months before admission he had noticed dyspnoea on exertion. There were no other symptoms, but he was apprehensive as he was aware of the family history (see later).

On physical examination there was a dominant 'a' wave in the jugular venous pulse. There was no right ventricular heave and no sign of right ventricular failure. A right atrial sound and accentuation of the pulmonary component of the second sound were noted and confirmed by phonocardiography. The electrocardiogram showed evidence of right atrial and right ventricular hypertrophy. A dominant main pulmonary artery and peripheral oligoamia were seen on chest x-ray.

Cardiac catheterization was performed under local anaesthesia with diazepam 15 mg, premedication. The right heart pressures before and after 100 per cent oxygen are summarized in the Table. Pulmonary wedge pressure was normal and dye dilution curves showed no evidence of a left-to-right or a right-to-left shunt. Pulmonary angiography confirmed the narrowing of the peripheral vessels, and there was no obstruction in the main pulmonary arteries.

Empirical treatment with phenindione resulted in slight symptomatic improvement over a follow-up period of six months.

Family tree The pedigree of the family is shown in the Fig.

The paternal grandmother (I.2) of the propositus (III.5) had asthma and died at the age of 76 of 'natural causes'. His father (II.9) died of cancer aged 71. Three of his father's sibs had died suddenly and unexpectedly in childhood. He married twice, the first wife dying of pneumonia aged 32.

There were five offspring from the first marriage, including the propositus who has four symptom-free children between the ages of 12
TABLE Clinical and haemodynamic data on four cases of primary pulmonary hypertension

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age at first symptoms (yr.)</th>
<th>Symptoms</th>
<th>Jugular venous pulse</th>
<th>Right ventricular heave</th>
<th>Auscultation</th>
<th>Systemic blood pressure (mm. Hg)</th>
<th>Electrocardiogram</th>
<th>Chest x-ray</th>
<th>Pulmonary artery pressure (mm. Hg)</th>
<th>Pulmonary vascular resistance</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.5</td>
<td>56</td>
<td>Exertional dyspnoea; 'a' wave</td>
<td>Right atrial sound; accentuated P₂</td>
<td>150/110</td>
<td>P pulmonale; right ventricular hypertension</td>
<td>Pulmonary trunk prominent; peripheral oligaemia</td>
<td>78/30</td>
<td>70/30</td>
<td>9 units</td>
<td>Alive 6 months after onset of symptoms</td>
<td></td>
</tr>
<tr>
<td>III.2</td>
<td>47</td>
<td>Exertional dyspnoea; ankle oedema</td>
<td>Right atrial sound</td>
<td>150/110</td>
<td>Right ventricular hypertrophy</td>
<td>Pulmonary trunk prominent</td>
<td>95/40</td>
<td>Not done</td>
<td>–</td>
<td>Died age 47</td>
<td></td>
</tr>
<tr>
<td>III.7</td>
<td>32</td>
<td>Chest pain; exertional dyspnoea; 'a' wave</td>
<td>Ejection click; short pulmonary ejection bruit; accentuated P₂</td>
<td>120/80</td>
<td>P pulmonale; partial RBBB</td>
<td>Pulmonary trunk prominent</td>
<td>105/55</td>
<td>Unchanged</td>
<td>32 units</td>
<td>Died age 33</td>
<td></td>
</tr>
<tr>
<td>IV.8</td>
<td>10</td>
<td>Frequent colds; syncope; 'a' wave</td>
<td>Ejection click; short pulmonary ejection bruit; accentuated P₂</td>
<td>120/75</td>
<td>P pulmonale; partial RBBB</td>
<td>Pulmonary trunk normal; peripheral oligaemia</td>
<td>55/30</td>
<td>45/25</td>
<td>11 units</td>
<td>Died age 15</td>
<td></td>
</tr>
</tbody>
</table>

and 21. They have no abnormality on physical examination by their own doctor; we have reviewed their electrocardiograms which are normal. A sister (III.2) was investigated at the Alfred Hospital, Melbourne, and was found to have primary pulmonary hypertension (see Table). She died, aged 47, and is survived by three children, one of whom has recurrent bronchitis. Another sister (III.4) is alive, aged 54; she has no abnormalities on physical examination by her own doctor, and we have reviewed the electrocardiogram which is normal. A brother (III.3) died from asthma at the age of 56. Another brother (III.1) is alive and well aged 61 and we have no clinical details.

There were four offspring from the second marriage. III.7 was found to have primary pulmonary hypertension on investigation at Royal Prince Alfred Hospital, Sydney (see Table), and she died at age 33. Her daughter (IV.8) was investigated at the same hospital and was also found to have the disease; she died at age 15. Two brothers of III.7 are alive and well, age 35 and 37; we have no further information. There is no evidence of consanguinity in the first or second marriage of II.9 the father of the propositus.

Discussion

An autosomal dominant mode of inheritance best accounts for the distribution of primary pulmonary hypertension in this family. The remarriage of the father with the appearance of the disease in both his families provides support for this. The great variation in the age at which symptoms develop suggests that there may be a subclinical form of the disease consistent with longevity in some members of the family. This could explain the apparent absence of the disease in the father.

A recessive mode of inheritance is barely possible, as the gene would need to have been present in heterozygous form in the father, both wives, and again in the husband of III.7. There is no evidence of sex-linking as cases have occurred in both men and women.

A further alternative is that pulmonary hypertension in this family is not due to a single genetic abnormality, but, like systemic hypertension, is the expression of multiple genetic and environmental factors. A predisposition towards abnormal development of the lung may result in varying degrees of pulmonary hypertension or other abnormalities of the respiratory system. Thus, scattered cases of asthma appear in the present family tree (Fig.), and Melmon and Braunwald (1963) reported agenesis of one lung and hypoplasia of the other in an infant born to a woman with pulmonary hypertension.

A cousin of III.7 with indirect evidence of pulmonary hypertension was included in the pedigree of this family when reported by Fleming (1960). With this inclusion, a polygenic mode of inheritance must be invoked to explain the distribution of cases. However, the finding that a step-brother (III.5) has proven pulmonary hypertension suggests that the disease in this family is due to a single genetic trait transmitted by an autosomal dominant mode of inheritance.

In other families with the disease proven...
in more than one generation, autosomal dominance best explains the distribution of cases (Dresdale, Michtom, and Schultz, 1954; Parry and Verel, 1966; Rogge et al., 1966; Kingdon et al., 1966).

In a large family reported by Melmon and Braunwald (1963) and Boiteau and Libanoff (1965) the diagnosis was proven by catheterization in only two sibs, but there was strong clinical and post-mortem evidence of the disease in a total of five cases in three generations and the distribution is best explained by a dominant mode of inheritance.

On the other hand, Hood et al. (1968) suggested that a recessive mode of inheritance best explained the distribution of cases in families in which only one generation was affected (Van Epps, 1957; Coleman, Edmonds, and Tregillus, 1959). Hood et al. (1968) reported a further case in which three sisters were affected and four brothers in the same generation were not. However, the parents were not examined; it is possible, as in the present family, that one parent was affected with a mild form of the disease. On this basis, the mode of inheritance could be interpreted as autosomal dominance with varying expression.

We wish to thank Dr. K. Lipshutt who referred the patient (III.5), Dr. J. M. Gardiner who forwarded the information about III.2, the Medical Superintendent of Royal Prince Alfred Hospital, Sydney, for information about III.7 and IV.8, Dr. George Hale for information about IV.2.

We are especially grateful to the wife of the propositus who provided valuable information on the family tree, and Dr. David Danks who gave us expert assistance in interpreting the genetics.

References

Addendum
The 34-year-old daughter of III.2 noted dyspnoea on exertion in mid-1969. She had been a heavy smoker for 15 years and had symptoms of chronic bronchitis. The results of spirometry in September 1969 were FEV1, 1.3 litres, vital capacity 2.7 litres (predicted 3 litres), ratio FEV1/VC 48 per cent.

Cardiac catheterization on 11 March 1970 gave the following results: pulmonary artery pressure 28/11 (mean 20) mm.Hg at rest and 32/18 (mean 25) mm.Hg after exercise. Exercise was tolerated badly, causing severe breathlessness. There was hyperventilation with Pco2 of 30 mm.Hg at rest and at exercise. The cause of the hyperventilation was not determined but a psychogenic cause was considered likely.

We would like to thank Dr. George Hale and Dr. Michael Jelinek of St. Vincent’s Hospital, for this information.
Familial pulmonary hypertension. Evidence of autosomal dominant inheritance.

P Thompson and C McRae

Br Heart J 1970 32: 758-760
doi: 10.1136/hrt.32.6.758

Updated information and services can be found at:
http://heart.bmj.com/content/32/6/758

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/