Accelerated atrioventricular conduction after myocardial infarction

A study using His bundle electrograms

George Mathew and E. B. Raftery

From the Cardiac Department, Northwick Park Hospital and Clinical Research Centre, Harrow, Middlesex

His bundle recordings obtained in a patient with progressive shortening of the PR interval observed during and after acute diaphragmatic myocardial infarction showed abbreviated AH and HV intervals. Though atrial pacing at rapid rates produced prolongation of the AH interval, this was not as great as is seen in normal subjects and the abbreviated HV interval remained unchanged. The results of His bundle electrograms during atrial pacing on another patient with an old inferior myocardial infarction and intermittent Wolff-Parkinson-White syndrome were similar to the response of normal subjects, but the Wolff-Parkinson-White configuration was only seen with premature supraventricular beats.

Possible mechanisms are discussed, and it is suggested that the most likely is infarction of the AV nodal tissue responsible for the normal nodal delay.

Accelerated atrioventricular (AV) conduction associated with myocardial ischaemia is rare, though all grades of AV block are commonplace. Accelerated AV conduction manifesting as Wolff-Parkinson-White syndrome (anomalous AV excitation) has been reported to occur after acute carbon monoxide poisoning (Seling, 1966), during acute articular rheumatism (Ougier, Page, and Marc, 1964), in myocarditis, cardiomyopathy, and digitalis toxicity (Ohnell, 1944; Vakil, 1955; Mathur, Wahal and Seth, 1969), and in some congenital heart diseases. There have been occasional reports of Wolff-Parkinson-White syndrome occurring with acute myocardial infarction (Apostolov, 1964; Forin and Tammaro, 1969; Angelino, Mina, and Gallo, 1964). Two patients with accelerated AV conduction associated with acute ischaemic heart disease have recently been observed and studies performed to elucidate the mechanisms by which this may occur.

Methods

Both patients were studied in the postabsorptive state and were premedicated with 10 mg diazepam intramuscularly one hour before cardiac catheterization. The procedure was explained to the patients in detail and the necessary consent was obtained. Under 1 per cent xylocaine local anaesthesia, a bipolar (10 mm) 6 Fr. electrode catheter was introduced into the right or left femoral vein percutaneously. The catheter tip was positioned using fluoroscopic control across the tricuspid ring, as described by Scherlag et al. (1969) and Damato and Lau (1970).

His bundle potentials were recorded over a frequency range of 40–500 Hz on a Cambridge six-channel photographic recorder at a paper speed of 100 mm/sec.

A second 5 Fr. bipolar electrode catheter was passed percutaneously from the right subclavian vein and positioned at the site of the sinoatrial node, for pacing the right atrium from an external battery-powered pacemaker up to a rate of 170/min.

Atrium to His bundle (AH) times were measured from the P wave of a simultaneous standard lead III, and His to ventricle (HV) times from the intracardiac recording.

Case reports

Case 1

A 59-year-old man with a two-year history of palpitation and a three-month history of dizzy attacks, was admitted to hospital in March 1972, with crushing chest pain which started suddenly while he was gardening. The pain radiated to his left arm without dizziness or shortness of breath. Physical examination revealed a small man of normal nutrition. There was no clinical evidence of hypercholesterolaemia. His pulse was 54/min when admitted and later rose to 73/min spontaneously. His blood pressure was 120/90 mmHg. There were no signs of heart failure and his peripheral pulses were normal.
The remainder of the physical examination was within normal limits. His electrocardiogram showed sinus rhythm with a PR interval of 0.18 sec and an acute inferior (diaphragmatic) myocardial infarction, and he was admitted to the coronary care unit for treatment. His progress was uneventful and there were no complications. No drugs were administered and his serum electrolytes were within normal limits. Serial electrocardiograms showed evolutionary changes and a decreasing PR interval, from 0.18 to 0.12 sec, from the first day of admission onwards (Fig. 1). The shortened PR interval has remained constant ever since.

![Successive electrocardiograms from Case 1 showing the evolution of a diaphragmatic infarction with shortening of the PR interval from 0.18 sec to 0.12 sec.](image-url)
and increasing angina. He had a past history of antero-
inferior myocardial infarction in 1966 and had been out of
work because of his cardiac disability. Physical
examination disclosed a blood pressure of 140/80 mmHg,
and a pulse rate of 100/min, with occasional ectopic
beats. There was no evidence of congestive heart failure
but his heart was enlarged with a loud third heart sound
and an intermittent fourth heart sound. His lungs were
clear. The rest of the physical examination was within
normal limits. An electrocardiogram showed old anterior
and inferior myocardial infarction and occasional pre-
mature atrial contractions with the Wolff-Parkinson-
White type of aberrant intraventricular conduction (Fig.
3). He was investigated with right and left heart catheter-
ization including coronary angiograms. Because of the
intermittent Wolff-Parkinson-White complexes on the
electrocardiogram, he also had a His bundle electrogam.
During his hospital stay his serum electrolytes and
serum enzymes were within normal limits. The coronary
arteriogram showed complete occlusion of right coronary
artery with some collaterals from the circumflex branch.
A left ventriculogram showed poor contraction, particu-
larly of the diaphragmatic surface.

Electrophysiological study

Electrophysiological study and results The components of the His bundle electrogram during sinus
rhythm and with atrial pacing up to 170/min are sum-
marized in the Table. Representative tracings during
pacing at 140/min and 150/min are shown in Fig. 2.
The AH interval was abbreviated at rest and with in-
creasing pacing rates it was prolonged, but not to the
degree usually described for normal subjects (300 msec
at 160/min), but the HV interval, which was abbreviated
to begin with, remained the same. This suggested a par-
tial atrioventricular (AV) nodal bypass which responded
to increasing atrial rates in a normal fashion, and rapidly-
conducting fibres in the His bundle revealed as a conse-
quence of ischaemia of the AV node.

Case 2

A 53-year-old man was admitted to the hospital com-
plaining of orthopnoea, paroxysmal nocturnal dyspnoea,

Case 1

Lead III

Rate = 140/min

Rate = 150/min

Discussion

Anatomical studies summarized by James (1966)
and James and Sherf (1968) suggest that the sino-
atrial node is connected to the atrioventricular (AV)
node by means of three specialized tracts in the
atrial muscle (Fig. 5). The sinoatrial impulse is
conducted rapidly in these specialized tracts, par-
nicularly the anterior and middle tracts, and reaches
the crest of the AV node, where a delay of about 5
msec occurs before the node is depolarized. The
mechanism of this delay is obscure, but it is thought
to occur at the junction of transitional cells and P
cells. The posterior tract is larger than the other two
and is activated at a later stage. Its terminal fibres
make connexion with the bundle of His below the
AV node and have the potential of bypassing the
nodal delay (Fig. 4), but the impulses which travel
by this route are usually blocked before they can be
conducted. Sherf and James (1969) suggest that
functional disturbances in the SA node can produce a
situation in which the posterior tract is activated
sooner than the other tracts. The net result of this
would be a short PR interval with a normal QRS

<table>
<thead>
<tr>
<th>Heart rate (beats/min)</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AH*</td>
<td>HVT</td>
</tr>
<tr>
<td></td>
<td>(msec)</td>
<td>(msec)</td>
</tr>
<tr>
<td>68</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
<td>26</td>
</tr>
<tr>
<td>110</td>
<td>148</td>
<td>24</td>
</tr>
<tr>
<td>120</td>
<td>152</td>
<td>22</td>
</tr>
<tr>
<td>130</td>
<td>180</td>
<td>22</td>
</tr>
<tr>
<td>140</td>
<td>184</td>
<td>22</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>24</td>
</tr>
<tr>
<td>160</td>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>170</td>
<td>200</td>
<td>22</td>
</tr>
</tbody>
</table>

* 'Normal' value, 120-200 msec.
† 'Normal' value, 35-55 msec.

FIG. 2 His electrograms from Case 1 during atrial
pacing. Note the short AH and HV intervals. H,
His potential; V, ventricular potential.
complex, or a Wolff-Parkinson-White syndrome, depending on whether Mahaim fibres were activated or not.

The studies performed on the first of our patients suggest accelerated conduction both above and below the AV node. In this respect the findings differ from those described in Lown-Ganong-Levine syndrome (Smithen and Krikler, 1972), but are similar to the findings reported in a single case of Lown-Ganong-Levine syndrome by Mandel, Danzig, and Hayakawa (1971).

These findings are most readily explained by postulating that the area of the AV node responsible for the normal delay process has been destroyed, and that rapidly-conducting pathways in the bundle of His such as those described by Mendez and Moe (1966) have been activated. Proof of this would be provided by His electrograms during retrograde conduction of artificially-induced right ventricular ectopic beats, but unfortunately it was not possible to make this observation on this patient.

The studies performed on the second patient were

FIG. 3 Electrocardiogram from Case 2. Note slightly premature ectopic beats in the rhythm strip with the characteristic appearance of Wolff-Parkinson-White syndrome.
Accelerated atrioventricular conduction after myocardial infarction

Amenable to much simpler interpretation, and suggest early activation of the posterior interatrial tract with ectopic beats, though intermittent activation of a Kent bundle or a Mahaim bundle cannot be excluded.

The right coronary artery always provides the blood supply to the AV node, and in 55 per cent of cases it supplies the sinoatrial node as well. It is not surprising that infarction or ischaemia involving this vessel commonly produces significant alterations in atrioventricular conduction, but these alterations usually take the form of heart block and it is not common to find accelerated conduction. The mechanisms of accelerated conduction in these circumstances must remain speculative, but the most likely explanation is that partial infarction or ischaemia of the AV node leaves a very small remaining functional area which is unable to interpose the normal nodal delay. However, our observations suggest that this explanation alone is not enough, and in order to explain the rapid conduction both above and below the AV node, it is necessary to postulate a system of rapidly-conducting fibres in the conducting system, whose presence has been unmasked by the nodal infarction. Evidence that such systems may exist has been produced by Mendez and Moe (1966) and Prinzmetal et al. (1952).

The eventual outcome of accelerated atrioventricular conduction after myocardial infarction are not known. Whether resolution of the acute phase will restore the normal conduction pattern or not remains to be seen, but it seems likely that progressive ischaemia will eventually result in heart block in these individuals.

References

Requests for reprints to Dr. E. B. Raftery, Cardiac Department, Northwick Park Hospital, Watford Road, Harrow, Middlesex HA1 3UJ.
Accelerated atrioventricular conduction after myocardial infarction. A study using His bundle electrograms.
G Mathew and E B Raftery

Br Heart J 1973 35: 985-990
doi: 10.1136/hrt.35.10.985

Updated information and services can be found at: http://heart.bmj.com/content/35/10/985.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/