Interference effect of myopotentials on function of unipolar demand pacemakers

O.-J. Ohm, H. Bruland, O. M. Pedersen, and E. Waerness

From Medical Department A and Neurological Department, University of Bergen, School of Medicine, Bergen, Norway

Of 44 patients with demand pacemakers, 33 had pacemaker rhythm and were examined for failure in pacemaker function produced by myopotentials. Most patients were subjected to a standard experimental programme, with simultaneous recording of electrocardiogram and electromyogram.

In 28 of the 33 patients the pacemaker was inhibited by muscle potentials. Three patients had suffered symptoms which can be ascribed to this effect. Only one patient had symptoms in connexion with the examination. In 12 patients, lifting from 2 to 4 kg was sufficient to produce pacemaker failure.

In one patient asystole occurred during the experiment, and lasted for almost 7 seconds before idioventricular rhythm took over. Failure in pacemaker function was produced in 5 patients pressing a hand against a firm horizontal surface, and in 7 patients rising from an armchair.

The highest myopotential recorded was 3.2 mV. In some the deflection was off the scale.

The cause of inhibition is the difference in voltage between the two electrodes of the pacemaker.

In patients requiring the implantation of a demand pacemaker, greater use should be made of bipolar or ventricular-triggered pacemakers, or of fixed rate pacemakers.

In the course of the past few years there have been several publications concerning undesirable inhibition of demand pacemakers (Furman et al., 1968; Sowton, Gray, and Preston, 1970; Barold et al., 1971; Blaser et al., 1972; Schulten et al., 1972). It has recently been shown that potentials from skeletal muscle are capable of inhibiting the demand mechanism and causing temporary pacemaker failure (Wirtzfeld, Lampadius, and Ruprecht, 1972; Mymin et al., 1973).

Little is known concerning the frequency and symptomatology of this complication. The object of our study was to investigate the frequency of this form of pacemaker failure, and to describe the symptomatology more closely.

Subjects and methods

During the period 1 January 1970 to 1 January 1973, demand pacemakers have been implanted in a total of 58 patients in Medical Department A. Nine patients are dead, and 5 could not be examined because of other serious illnesses. Forty-four patients were examined for failure in pacemaker function caused by myopotentials (Table 1). Of these patients, 43 had had pulse generators implanted subcutaneously in the pectoral region, 39 on the right and 4 on the left side. In 1 patient the pacemaker was implanted subcutaneously in the abdominal wall. All except 2 patients had unipolar pacemakers (Medtronic 5843 and 5943). The sex, age, and diagnosis for each patient is shown in Table 2, as well as the type of pacemaker and the smallest load which gave inhibition and escape rhythm.

The electromyogram was recorded by 2 different electromyographs (DISA, type 13A69 and type 14A21) and by concentric needle electrodes (DISA 9013K0032). Recordings were made with 3 to 5 electrodes simultaneously, one being placed precordially on the skin (DISA 13K60). The others were placed in the lateral part of the pectoralis major muscle, approximately 10 cm from the acromion, immediately medial to, or beneath, the pulse generator; in the fifth left intercostal space in the midclavicular line; and in Case 8 in the rectus abdominis muscle. Standard lead III was simultaneously recorded by a separate electrocardiograph (Cardiotat, Type F).

Forty-three patients were examined in the supine position with the arm abducted 90° at the shoulder joint without underlying support, on the side in which the pulse generator was implanted. By putting weights in the patient's hand, and encouraging him to hold the arm in the same position, an isometric contraction of the pectoral muscle on the same side was achieved. The
TABLE 1 Pacemaker type and occurrence of pacemaker failure and natural rhythm in all patients

<table>
<thead>
<tr>
<th>Pacemaker type</th>
<th>Men</th>
<th>Pacemaker failure</th>
<th>Not inhibited</th>
<th>Heart rate > 60/min</th>
<th>Women</th>
<th>Pacemaker failure</th>
<th>Not inhibited</th>
<th>Heart rate > 60/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic 5843</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medtronic 5943</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Medtronic 5942</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stanicor</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>21</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 2 Clinical details in 33 patients with pacemaker rhythm

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Indication for treatment</th>
<th>Pacemaker type</th>
<th>Duration of treatment (mth)</th>
<th>Load (kg)</th>
<th>Inhibition (sec)</th>
<th>Escape rhythm</th>
<th>Effect of armchair/pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>50</td>
<td>AV block III</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5841</td>
<td>38</td>
<td>2</td>
<td>Ungraded</td>
<td>0</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>75</td>
<td>AV block III</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5841</td>
<td>21</td>
<td>5</td>
<td>Ungraded</td>
<td>0</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>64</td>
<td>AV block II, III, RBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>4</td>
<td>1.3</td>
<td>48</td>
<td>Armchair- pressure+ Armchair+ pressure+</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>70</td>
<td>AV block II, III, Mobitz II, LBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>43</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>61</td>
<td>Atrial fibrillation, AV block III, LBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>21</td>
<td>2</td>
<td>1.9</td>
<td>32</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>69</td>
<td>AV block I, SA block</td>
<td>Bradycardia</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>4</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>49</td>
<td>AV block III</td>
<td>Bradycardia</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>76</td>
<td>AV block I, II, LAH, RBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>56</td>
<td>AV block I, III, RBBB</td>
<td>Bradycardia</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>78</td>
<td>AV block I, III, RBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>69</td>
<td>AV block I, Mobitz I</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>73</td>
<td>AV block II, III, alternating RBBB + LAH and LBBB</td>
<td>Vertigo</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>68</td>
<td>AV block I, III, Mobitz I</td>
<td>Heart failure</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>60</td>
<td>AV block I, LBBB</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>63</td>
<td>SA block, atrial fibrillation</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>52</td>
<td>Coronary sinus rhythm</td>
<td>Vertigo</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>83</td>
<td>AV block I, III, LBBB</td>
<td>Heart failure</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>63</td>
<td>SA block, Vertigo</td>
<td>Syncope</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>72</td>
<td>Coronary sinus rhythm</td>
<td>Vertigo</td>
<td>Ventricor Stanicor 5843</td>
<td>20</td>
<td>2</td>
<td>1.9</td>
<td>31</td>
<td>Armchair+ pressure+</td>
</tr>
</tbody>
</table>
least weight resulting in inhibition of the pacemaker was noted. In some patients the load had to be altered, and other arm positions, and magnitude and direction of load, had to be tried before inhibition of the pacemaker was achieved.

In addition to examination in the supine position, 9 patients were examined while rising from a chair, assisting themselves by pressing their arms against the armrests.

Five patients were also examined in a standing position, while pressing a hand lightly against a firm horizontal surface.

The patient with the pulse generator implanted in the abdomen was examined while sitting up from a supine position without using his arms.

Case reports

Three patients had symptoms that could be ascribed to inhibition by myopotentials.

Case 20 suffered his first syncope in the beginning of October 1960. After numerous syncopes he was admitted to the department in June 1972. A week later a demand pacemaker was implanted in the right pectoral region, with a unipolar endocardial electrode.

In the middle of September 1972, he again suffered attacks of vertigo and syncope. Failure in pacemaker function was seen, and was ascribed to unstable electrode position, which was corrected. In the following months the tendency towards vertigo continued, especially if he put his right arm across his chest, or if he used his arms
FIG. 1 Case 20. Cardiac arrest of almost 4 seconds' duration occurred when the patient laid his right arm across his chest. The patient then complained of vertigo and the experiment was broken off. No idioventricular rhythm occurred. Electromyogram was registered from a needle placed laterally in the right pectoralis major muscle. Lowest strip in all figures is standard lead III in electrocardiogram, recorded simultaneously.

to assist in rising from a chair. Fig. 1 shows simultaneous registrations of electrocardiogram and electromyogram from the patient while he is putting his right hand against his left shoulder. The myopotentials of this patient measured 2·0 to 2·1 mV during inhibition.

A fixed rate pacemaker was later implanted in this patient, and has functioned satisfactorily.

Case 4 had, for 2 years, suffered a tendency towards attacks of vertigo, with syncope of short duration. On 20 April 1971, a demand pacemaker was implanted with an endocardial electrode. The patient has subsequently on several occasions noticed a tendency towards vertigo while working with her arms above her head.

In this patient failure in pacemaker function was produced by weight load in supine position, on the patient rising from an armchair, and on exercising a slight pressure with her right hand against a firm surface at chest height.

Case 32 had a demand pacemaker and an endocardial electrode implanted in October 1972, because of multiple syncopal attacks and complete atrioventricular block. He has subsequently suffered attacks of vertigo on several occasions, with pulse frequencies between 50 and 60. Here again inhibition of pacemaker function was produced by muscle contraction. On the other hand, it was found that certain QRS complexes did not inhibit pacemaker function. Some premature beats, however, recognized by the pacemaker, did not result in pulse waves and pulse rate falling below 50 because of the hysteresis mode of action of the pacemaker.

Results

At the time of examination 33 of the patients had pacemaker rhythm, and it was only in these that the effect of myopotentials on pacemaker function could be assessed. In 28 patients contraction of the skeletal muscle in the immediate vicinity of the pulse generator led to inhibition of the demand function.

In 12 of the patients, a load of 2 to 4 kg on the outstretched arm was sufficient to cause inhibition. In some patients the load direction was altered to give a contraction in the part of the pectoral muscle that lay nearest the pulse generator.

The duration of cardiac arrest varied with the idioventricular rhythm. In Case 14 cardiac arrest of almost 7 seconds' duration was registered while lifting 6 kg (Fig. 2).

In some patients asystole of varying duration was interrupted by 1 to 2 pacemaker escape beats (Fig. 3).

In some patients, there was only a short prolongation of the RR interval between the last pacemaker
Interference effect of myopotentials on demand pacemakers

FIG. 2 Case 14. Lifting 6 kg and simultaneously raising right arm resulted in an arrest of ventricular activity for 6.5 sec, before idioventricular rhythm ensued. Electromyogram from right pectoralis major muscle near pacemaker (top) and deep in intercostal muscle over apex (middle).

FIG. 3 Case 7. Partial inhibition of pacemaker with pacemaker escape corresponding to a rate of 33 per minute on lifting 4 kg. Electromyogram from right pectoralis major muscle, medial to pacemaker (top) and lateral to pacemaker (middle).

impulse and the natural escape, corresponding to a heart rate between 30 and 50 a minute.

Inhibition during constant muscle contraction could be terminated by placing a ring magnet over the pulse generator, but was still present when the magnet was removed (Fig. 4).

Our patient (Case 8), in whom epicardial leads were used, had the pulse generator implanted in his abdominal wall. Inhibition of the pacemaker was produced when he rose from a supine to a sitting position.

Discussion and conclusions

This study has shown that myopotentials are capable of producing inhibition of the demand function in 28 of 33 patients (85%).
FIG. 4 Same patient and electromyogram recordings as in Fig. 2 during contraction of right pectoralis major muscle on lifting 4 kg. Only P waves could be seen in the electrocardiogram until a magnet was placed over the pulse generator. On removal of magnet circulatory arrest returned, and remained until patient terminated muscle contraction.
The lowest myopotentials registered simultaneously with inhibition had in some cases an amplitude of $<1.5 \text{ mV}$. The apparent effect on pacemaker function of myopotentials of such low voltage may be partly due to the recording technique. The concentric electrode registers motor-unit potentials from a very limited area of the muscle. It is probable that potentials with higher voltages and different frequencies are present in other areas, and that these affect the pacemaker without being registered by the EMG electrode.

In one of the patients (Case 27) the force exerted was slight. The myopotentials registered were weak, and the frequency far less than in a normal interference pattern, which may explain why the pacemaker was not affected in this case.

Only contraction of the muscle in the immediate vicinity of the pulse generator produced inhibition. Contraction of the contralateral pectoral muscle produced no inhibition, though motor-unit potentials with high voltage were recorded.

It is reasonable to assume that the cause of inhibition is the net difference in voltage measured between the pulse generator and the electrode tip, caused by the subcutaneous position of the pulse generator. Inhibition is most likely to occur if the anode and cathode are situated on opposite sides of the contracting muscle. In one patient, however, we produced inhibition though the pulse generator was implanted under the pectoral muscle.

One way of reducing the frequency of this complication might be to place the pulse generator on the side opposite to the dominant hand.

The area of the indifferent electrode does not seem to be of major importance as the frequency of inhibition was even higher in Medtronic 5843 (diameter 2.5 cm) than 5943 (diameter 6.4 cm).

We have not had the opportunity of examining ventricular-triggered pacemakers. Other workers have found that these pacemakers react to myopotentials by an increase in frequency up to the listed maximal frequency (Wirtzfeld et al., 1972). The effect on ventricular-triggered pacemakers does not, in most cases, appear to be as serious as in those with a ventricular-inhibited mechanism, as a high heart rate for the duration of a few seconds is tolerated better than a corresponding asystolic period. On the other hand, the long refractory period of this type of pacemaker prevents inhibition by a QRS complex in this phase, and the succeeding pacemaker impulse will then coincide with the T wave in the vulnerable phase (Castellanos et al., 1969).

Inhibition of demand pacemakers produced by myopotentials from skeletal muscle or electric interference of the pulsed-energy type is a more serious complication than inhibition by external electrical apparatus of the continuous wave type, because the pacemaker will, in the latter case, function asynchronously with the interference rate.

Patients with slow or non-existing idioventricular rhythm may suffer a circulatory arrest of such long duration that life-threatening tachyarrhythmias, or myocardial or cerebral damage, may ensue. Only one patient (Case 20) suffered symptoms in the form of vertigo in this study. It is possible that sudden death during permanent treatment with demand pacemaker is due to complications of this type.

In the experimental programme we attempted to reproduce some of the muscular movements to which patients are often exposed in daily life. Inhibition of pacemaker function was produced in 7 of 9 patients during the act of rising from an armchair, and in all 5 patients during pressure of the hand against a firm horizontal surface.

Bipolar demand pacemakers will probably not be affected by myopotentials, as the relative position of the electrodes gives a lower difference in voltage between the poles.

The use of a metal capsule around the pulse generator (Medtronic 5942 and 5943) reduces the risk of an electromagnetic field directly affecting the electronics of the pacemaker, with the result that the pacemaker will operate at the interference frequency. This form of screening of the pulse generator is not capable of preventing undesirable inhibition from myopotentials. Patients requiring demand pacemakers should therefore to a greater extent be fitted with bipolar systems or ventricular-triggered pacemakers, unless fixed rate pacemakers are used. The manufacturers give the sensitivity to R-wave potentials of the different pacemakers as 1.5–2.5 mL (Medtronic 5843–5943 and Stancor). As of 23 June 1971, the R wave sensitivity of Medtronic 5943 was altered to 2.3–3.7 mL. The highest potential measured from the pectoral muscle in this study was 3.2 mV, though in 13 patients the maximal voltage could not be measured because the deflection was off the scale. If the use of unipolar demand pacemakers is to continue, the sensitivity to incoming wave forms as well as amplitude should be altered. The present study indicates that this would reduce inhibition.

References

Requests for reprints to Dr. O.-J. Ohm, University of Bergen, School of Medicine, Medical Department A, Haukeland Hospital, 5000 Bergen, Norway.
Interference effect of myopotentials on function of unipolar demand pacemakers.
O J Ohm, H Bruland, O M Pedersen and E Waerness

Br Heart J 1974 36: 77-84
doi: 10.1136/hrt.36.1.77

Updated information and services can be found at:
http://heart.bmj.com/content/36/1/77.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/