Cardiomyopathy complicated by left ventricular aneurysms in children

Luis E. Alday, Eduardo Moreyra, Carlos Quiroga, Carlo Buonano, and Brunilde Dander

From the Departamento de Cardiologia, Hospital San Roque, Obispo Salguero 50, Córdoba, Argentina; and Istituto Ospitalieri, Verona, Italy

Ventricular aneurysms in children are unusual. Three patients with cardiomyopathy associated with angiographically proved left ventricular aneurysms in this age group are reported. Two of them were girls. The ages were 20 months, 7 years, and 14 years. Heart failure was present in all patients. There was radiological evidence of cardiomegaly in all three, and the electrocardiogram showed signs of necrosis in two of them. Selective left ventricular angiography disclosed generalized hypokinesis in all patients. One child had an aneurysm of the diaphragmatic wall. In another the aneurysm was localized in the muscular ventricular septum, causing severe subpulmonary stenosis by encroaching in the right ventricular outflow tract during systole. The third patient had an aneurysm of the left ventricular free wall partly encircling the left ventricle. The coronary arteries appeared normal in all cases. The clinical features of the underlying disease were not altered by the presence of the aneurysm except in the patient with the septal aneurysm and subpulmonary stenosis. In this patient the aneurysm was successfully resected.

The commonest cause of left ventricular aneurysm in adults is ischaemic heart disease (Cheng, 1971). Unusual causes for this lesion include syphilis (Braunstein, Bass, and Thomas, 1940), tuberculous granuloma (Behyet and VandenPutte, 1958), mycotic embolism (Layman and January, 1967), Chagas's disease (Mois, Rosenbaum, and Hojmen, 1955), fungal endocarditis (Mershon, Samuelson, and Layman, 1968), nonspecific myocarditis (Moreyra et al., 1972), and cardiac sarcoidosis (Lull et al., 1972). They may also be secondary to chest trauma (Killen et al., 1969), or surgery (Wychulis et al., 1971).

Left ventricular aneurysms in children are extremely unusual. They may be congenital (Paronetto and Strauss, 1963; Ruttenberg et al., 1964; Treistman et al., 1973), secondary to anomalous origin of the left coronary artery from the pulmonary trunk (Bland, White, and Garland, 1933), or result from rubella myocarditis (Van der Horst and Gotsman, 1970). Calcific apical aneurysms occurring almost exclusively in Africans (Pocock et al., 1965) have also been described in this age group.

It is the purpose of this communication to present three children with cardiomyopathies and angiographically proven left ventricular aneurysms.

Case reports

Case 1
A 14-year-old mentally retarded girl with no relevant past and family history was admitted to the hospital in severe congestive heart failure. She was put on bed rest, given diuretics and digitalis, but showed obvious intolerance to the latter, experiencing frequent arrhythmias. She had cardiomegaly and gallop rhythm. There were no murmurs. Laboratory studies were normal. A chest x-ray obtained at the time of the cardiac catheterization disclosed an enlarged heart with a cardiothoracic ratio of 0.54. The aortic knuckle was small and the pulmonary vasculature appeared normal. The electrocardiogram showed sinus rhythm alternating with episodes of atrial fibrillation. There was left atrial enlargement, left axis deviation (QRS -30°), and diffuse ST-T abnormalities. Bradycardia, sinus arrests, second degree atrioventricular block, and frequent ventricular extrasystoles were seen while the girl was under treatment with digitalis.

A combined cardiac catheterization showed normal

Received 29 July 1975.

1Present address: Departamento de Cardiología, Hospital de Niños, Corrientes 643, Córdoba, Argentina.
Presents in part to the VII World Congress of Cardiology, Buenos Aires, Argentina, September 1974.

British Heart Journal, 1976, 38, 162-166.
intracardiac pressures except for the right ventricular end-diastolic and the right atrial mean pressures, which were raised (Table). The cardiac index was low at 2.41 per min per m² b.s.a. Selective left ventricular cineangiography in the right anterior oblique projection disclosed extensive impairment of the left ventricular contractility, with an ejection fraction of 49 per cent. A medium size subvalvular aneurysm was present in the diaphragmatic wall as well as grade 2 mitral regurgitation (Fig. 1). The aorta and coronary arteries appeared normal in the retrograde aortogram.

The patient was discharged with the diagnosis of cardiomyopathy and maintained on medical treatment. Three months later she was readmitted in severe congestive heart failure unresponsive to treatment, dying shortly after. Necropsy was not permitted.

Case 2

A 20-month-old boy presented at the age of 20 days in congestive heart failure. The diagnosis of congenital heart disease was made, and thereafter he was maintained on digoxin, with a good clinical response. On physical examination he was well developed for his age. There was clinical evidence of cardiomegaly. Auscultation of the heart revealed a 4/6 ejection systolic murmur best heard along the left sternal border. There was a loud ejection sound present only on inspiration. The second heart sound was normally split, with a soft and delayed pulmonary component. Laboratory studies were normal. The chest x-ray showed cardiomegaly with a cardiothoracic ratio of 0.60. The apex of the heart was uptilted, and the pulmonary vasculature was within normal limits. The electrocardiogram (Fig. 2) had an AQRS axis of +15° in the frontal plane. The QRS width was 0.10 s. There were deep Q waves from V1 to V4. Tall and slurred R waves were present in the right precordial leads. Leads V5 and V6 showed increased voltage of the R waves and slurred S waves. In summary, the tracing was compatible with incomplete right bundle-branch block, biventricular hypertrophy, and anteroseptal wall necrosis.

A combined cardiac catheterization was performed showing a 57 mmHg (7.6 kPa) gradient between the right ventricular inflow and outflow tracts (Table). The systolic pressure of the right ventricular sinus was close to systemic level. The cardiac index was normal at 5.3 l per min per m² b.s.a. No shunts were demonstrated by oximetry or cineangiography. Right ventricular cineangiography in the lateral view showed a round filling defect in this cavity encroaching on the outflow tract. The return circulation to the left heart showed filling of a large septal aneurysm of the left ventricle which corresponded to the filling defect visualized in the right ventricle (Fig. 3). The left ventricular cineangiogram in the right anterior oblique projection showed poor contractility (35% ejection fraction). A retrograde aortogram disclosed normal coronary arteries.

Two years after the initial study the child was re-examined. He complained of moderate fatigue and dyspnoea on effort. The auscultatory findings, electrocardiogram, and chest x-rays were essentially unchanged. A repeat cardiac catheterization showed a more severe obstruction to right ventricular outflow (80 mmHg (10.6 kPa) gradient) (Table). Left ventriculograms in both oblique projections showed again impaired left ventricular contractility (40% ejection fraction), and a large multiloculated aneurysm of the ventricular septum impinging in the right ventricular outflow tract.

Open heart surgery was performed shortly after the second haemodynamic study. The right ventricular cavity was partially occupied by a fibrous saccular aneurysm arising from the muscular septum which was 4 cm long and 2 cm wide. A membranous ventricular septal defect measuring 7 mm in diameter and hidden by the aneurysm was found. The defect was infracristal and was separated by 15 mm from the base of implanta-
tion of the aneurysm. The aneurysm was resected and the ventricular septal defect was closed with separate stitches. The patient made an uneventful recovery.

Pathological findings

The aneurysm was whitish in colour and dome shaped. The maximal length was 4 cm, and the thickness varied between 2 and 3 mm. The surface was smooth on the convex side and slightly rugose on the opposite side. Microscopy showed that the muscular cardiac fibres were replaced by thick fibrous tissue with zones of hyalinization. There were scattered islets of myocardial fibres surrounded by the fibrous tissue. Inflammatory cells were not found.

Case 3

A 7-year-old well-developed girl with no relevant past and family history was asymptomatic up to the age of 6 years, when dyspnoea and fatigue were noted. Physical examination disclosed a heart murmur, and she was referred for investigation. There was clinical evidence of cardiac enlargement. The first heart sound was soft, and the second sound was slightly accentuated and normally split. A 2/6 ejection systolic murmur was heard along the left sternal border. Chest x-rays showed an enlarged heart with a cardiothoracic ratio of 0.56 and normal pulmonary vasculature. The electrocardiogram showed left ventricular hypertrophy and primary T wave abnormalities. There were abnormal Q waves in leads II, III, and aVF.

Cardiac catheterization showed normal pressures in both sides of the heart and no shunts (Table). The cardiac index was 4.8 l per min per m² b.s.a., and the maximal dP/dt was moderately decreased to 1260 mmHg/s (167.6 kPa/s). Selective left ventriculography in both oblique projections showed an enlarged left ventricle with diffuse hypokinesis and delayed emptying. A large, bilobed, crescent-shaped aneurysm arising from the left ventricular free wall, surrounded most of the ventricle (Fig. 4).

She was discharged on digitalis and six months later was restudied. The heart size had increased, and there were frequent ventricular premature beats. Left heart

FIG. 2 Electrocardiogram of Case 2. There is evidence of left ventricular hypertrophy, incomplete right bundle branch block, and anteroseptal wall necrosis.

FIG. 3 The left heart-phase of the right ventricular angiogram in the lateral projection of Case 2 showing a large, multiloculated aneurysm of the ventricular septum.
TABLE Haemodynamic data

<table>
<thead>
<tr>
<th>Pressures (mmHg)</th>
<th>Case 1 14 yr</th>
<th>Case 2 1 yr 8 mth</th>
<th>Case 2 3 yr 8 mth</th>
<th>Case 3 7 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right atrium</td>
<td>(10)</td>
<td>(4)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>Right ventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inflow</td>
<td>28/10</td>
<td>85/6</td>
<td>110/6</td>
<td>22/8</td>
</tr>
<tr>
<td>outflow</td>
<td></td>
<td>28/6</td>
<td>30/6</td>
<td></td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>28/13</td>
<td>(20)</td>
<td>(15)</td>
<td>(15)</td>
</tr>
<tr>
<td>P A wedge</td>
<td>(11)</td>
<td></td>
<td>(5)</td>
<td>(9)</td>
</tr>
<tr>
<td>Pulmonary vein</td>
<td></td>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left atrium</td>
<td></td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ventricle</td>
<td>110/11</td>
<td>96/8</td>
<td>110/9</td>
<td></td>
</tr>
<tr>
<td>Aorta</td>
<td>100/80</td>
<td>(86)</td>
<td>98/68</td>
<td>105/60</td>
</tr>
<tr>
<td>Cardiac index (l/min per m²)</td>
<td>2:37</td>
<td>5:35</td>
<td>4:91</td>
<td>4:8</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>49%</td>
<td>35%</td>
<td>40%</td>
<td>—</td>
</tr>
</tbody>
</table>

Numbers in brackets represent mean pressures. Left atrial and pulmonary vein pressures in Case 2 were obtained through a patent foramen ovale. Conversion factor from Traditional to SI units. 1 mmHg = 0.133 kPa.

catheterization disclosed further decrease of the maximal dP/dt to 700 mmHg/s (93·1 kPa). The coronary arteries were selectively opacified and appeared completely normal.

Discussion

Left ventricular aneurysms are very frequent in adults owing to the high incidence of ischaemic heart disease. Other causes are rare. On the other hand, the occurrence of left ventricular aneurysms in children is extremely unusual.

Our first patient had the clinical features of a congestive cardiomyopathy. The obvious cardiomegaly with diffuse impairment of the left ventricular contractility favours the generalized involvement of the myocardium. The location of the aneurysm in the diaphragmatic wall indicates that this was the area of maximal weakness. We have recently seen three adults with similar aneurysms in the presence of normal coronary arteriograms (Moreyra et al., 1972).

The second patient of our series is unique because the aneurysm involving the muscular ventricular septum produced severe subpulmonary stenosis. The paradoxical movement of the aneurysm during systole made it protrude into the right ventricular outflow tract. This type of obstruction to right ventricular outflow is similar to that found in some cases of aneurysms of the membranous ventricular septum (Das, Jahnke, and Walker, 1964), which often accompany small ventricular defects. In our patient there was also a membranous defect which had not been evident until surgery despite two haemodynamic studies and selective left ventricular cineangiograms previously performed. It appears that the defect was occluded by the redundant aneurysmal sac arising from the muscular septum.

This child's electrocardiogram showed anteroseptal wall necrosis. Coronary arterial anomalies were ruled out by retrograde aortography. A case of myocarditis caused by neonatal rubella showing an infarct pattern in the electrocardiogram and complicated by a left ventricular aneurysm has been reported by Van der Horst and Gotsman (1970). Our patient had no rubella stigmata but other intrauterine viral infection cannot be excluded. A

FIG. 4 Left ventriculography in the right anterior oblique projection of Case 3. A crescent-shaped bilobed aneurysm encircling the ventricle is clearly seen. The left ventricular cavity is huge.
myocardial infarct with normal coronary arteries, which is being recognized with increasing frequency in young adults (Khan and Haywood, 1974), is another possibility, though unlikely. Histological studies of the resected aneurysm showed that this was a fibrous structure with scattered myocardial fibres. Inflammatory cells were not present. However, since more than three years had elapsed from birth a myocarditis causing the original lesion could not be ruled out.

The last patient of our series also had evidence of myocardial disease with impaired left ventricular function. The electrocardiogram showed inferior wall necrosis and left ventricular hypertrophy. In this case the aneurysm had a very unusual crescent shape surrounding most of the left ventricular cavity. The coronary arteries were normal. To the best of our knowledge there are only two apparently similar cases reported. Paronetto and Strauss (1963) and Ruttenberg et al. (1964) found loculations and septations within the left ventricle corresponding to areas of myocardial wall hypoplasia and bridges formed by hypertrophied myocardial fibres. Their cases were probably congenital in origin, as we think is ours.

The three patients of this series are examples of cardiomyopathy of unknown origin complicated by left ventricular aneurysms. The presence of areas of localized weakness of the affected myocardium is the possible mechanism for aneurysm formation. The clinical features of the cardiomyopathy were not altered by the presence of the aneurysm except in the patient with subpulmonary stenosis caused by the aneurysm of the ventricular septum. In this child surgical resection of the aneurysm was carried out successfully.

References

Requests for reprints to Dr. Luis E. Alday, Chacabuco 23, 4°P "A", 5000 Córdoba, Argentina.
Cardiomyopathy complicated by left ventricular aneurysms in children.

L E Alday, E Moreyra, C Quiroga, C Buonano and B Dander

Br Heart J 1976 38: 162-166
doi: 10.1136/hrt.38.2.162

Updated information and services can be found at:
http://heart.bmj.com/content/38/2/162

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/