Case reports

British Heart Journal, 1977, 39, 1273–1275

Alternans in human atrial monophasic action potential

T. POP AND D. FLEISCHMANN

From First Medical Division, Rheinisch-Westfälische Technische Hochschule, Aachen, West Germany

This report describes the case of a patient with a supraventricular tachycardia with a ventricular rate of 109/min and no visible P waves in the electrocardiogram. The recording of the monophasic action potential of the right atrium disclosed an atrial tachycardia with a rate of 218/min. There was an alternans of the phase 2 of repolarisation in the action potential. This report emphasises the fact that the phenomenon of alternans occurs in man, as in the experimental animal, at a cellular level.

Electrical alternation of the ventricular complexes in man was first reported by Lewis (1910). Reviews of further cases have been made by Hamburger et al. (1935), Spang (1957), Colvin (1958), Schamroth et al. (1959), Chung et al. (1964), and Bellet (1971). Alternation of the P waves has been described by Bernreiter (1956), Kisch (1949), and Piso (1956). To the best of our knowledge, alternation of the human atrial monophasic action potential has not been yet documented. Recently, we observed this phenomenon in one of our patients.

Case report

A 65-year-old man was admitted because of severe congestive heart failure. There was an earlier history of anterolateral myocardial infarction in 1965. During 1965 he also developed atrial fibrillation and was subsequently treated with digoxin 0.4 mg daily. Physical examination revealed signs of congestive heart failure. A grade 4/6 holosystolic murmur was present at the apex radiating to the axilla. The heart rhythm was regular, with a rate of 109/min. The blood pressure was 130/80 mmHg. There were moist rales at both bases. The liver was enlarged three finger breadths below the right costal margin.

Laboratory tests showed blood urea 14·9 mmol/l (89 mg/100 ml), creatinine 132·6 μmol/1 (1·5 mg/100 ml), and digoxin 4·6 nmol/l (3·6 ng/ml). The other tests were within normal limits.

The electrocardiogram (Fig. 1) showed a regular supraventricular rhythm with no visible P waves. There were also significant Q waves in leads I, aVL, V5, and V6, compatible with an old anterolateral myocardial infarction.

In order to identify the atrial deflections, the right atrial monophasic action potential was recorded (Olsson et al., 1971; Pop et al., 1976). At this stage an atrial rate of 218/min, twice the ventricular rate (109/min), was seen (Fig. 2). The atrial deflections showed an alternans of the rate of repolarisation so that the duration of the monophasic action potential at 90 per cent of repolarisation alternately measured 170 and 210 ms, respectively.

In spite of intensive therapy, the patient’s state deteriorated progressively and death occurred 3 days after admission. On the day before death, the patient again experienced atrial fibrillation.

Discussion

The patient had had persistent atrial fibrillation since 1965. Before admission he developed regular atrial tachycardia with a rate of 218/min and a 2:1 AV block associated with raised serum digoxin concentration. Thus the diagnosis of a digitalis-induced atrial tachycardia with block is easily made (Levine, 1966).

The monophasic action potential has a configuration similar to that of an action potential recorded in its immediate vicinity (Hoffman et al., 1959). For this reason, the same notations are used for the depolarisation and for the repolarisation phases. Fig. 2 shows action potentials with distinct phase 2 of repolarisation. Such action potentials characterise the atrial specialised cells which have the potential to develop pacemaker activity (Hoffman and Cranefield, 1960; Hogan and Davis, 1968). The enhanced automaticity of such cells induced by digitalis presumably represents the electrophysiological basis of atrial tachycardia in our case (Hoffman and Singer, 1964). We assume that the group
of cells from which the monophasic action potential was made do not represent the true pacemaker because the recording is devoid of slow diastolic depolarisation.

The first electrical alternans in the monophasic action potential in the experimental animal was described by Schütz as early as 1936. Using the technique for recording intracellular action potential (Ling and Gerard, 1949), the phenomenon of alternation was first described by Hoffman and

Fig. 1 Electrocardiogram at admission (50 mm/s). No visible P waves. Regular ventricular rhythm with a rate of 109/min.

Fig. 2 Top: monophasic action potential of the right atrium (MAP). Bottom: lead V6 recorded with threefold amplification. Alternans of phase 2 of repolarisation in the MAP.
Alternans in human atrial monophasic action potential

Suckling in 1954. By means of tri-iodothyronine, thyroxine, and acute anoxia, Kleinfeld et al. (1956) were able to reproduce, in single ventricular fibres of the frog heart, four types of electrical alternans; namely alternation in: (1) the rate of depolarisation, (2) the rate of repolarisation, (3) the magnitude of the action potential, and (4) hyperpolarisation. In our case, there was an alternation of the rate of repolarisation; more precisely of phase 2 of repolarisation. As an explanation of the alternans observed in our patient, we propose the following hypothesis. During phase 2 of repolarisation, calcium and sodium ions flow across the membrane through the slow channel (Reuter, 1975; Zipes, 1976). The activation of this channel is not only voltage, but also time, dependent (Kohlhart, 1975; Zipes, 1976). In our patient, during atrial tachycardia, the slow channel is fully opened only every second beat because of the fast rate. In this manner the phenomenon of alternans is to be seen as 2/1 alternation in the degree of opening of the slow channel.

The alternans of the monophasic action potential has not yet been seen in patients with atrial flutter, an arrhythmia with a higher rate than the atrial tachycardia (Olsson, 1971; Gavrilscu et al., 1973). We assume, therefore, that in our case the alternans is not a physiological rate–dependent phenomenon, but merely the result of a disorder in the atrial cell membrane.

Three days after the recording of the monophasic action potential, the patient died. Whether the alternans of the atrial monophasic action potential is a sign of poor prognosis remains to be clarified by further investigations.

References

Lewis, T. (1910). Notes upon alternation of the heart. Quarterly Journal of Medicine, 4, 141–144.

Requests for reprints to Dr. T. Pop, Abteilung Innere Medizin I, Rheinisch-Westfälische Technische Hochschule, Goethestrasse 27/29, 51 Aachen, West Germany.
Alternans in human atrial monophasic action potential.

T Pop and D Fleischmann

Br Heart J 1977 39: 1273-1275
doi: 10.1136/hrt.39.11.1273

Updated information and services can be found at:
http://heart.bmj.com/content/39/11/1273

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/