British Heart Journal, 1979, 41, 238-240

Unusual angiographic appearances of the left ventricle in 2 cases of Pompe’s disease (glycogenosis type II)

D. F. DICKINSON, W. T. HOULSBY, AND J. L. WILKINSON

From the Royal Liverpool Children’s Hospital

SUMMARY The angiographic and haemodynamic findings in 2 cases of Pompe’s disease (glycogenosis type II) indicated an abnormal trabecular pattern, not previously reported, on the left ventricular angiogram of both patients. This feature may be helpful in distinguishing Pompe’s disease from other forms of myocardial abnormality.

Pompe’s disease (glycogenosis type II) is an uncommon inherited abnormality of carbohydrate metabolism, characterised by the accumulation of glycogen in skeletal and cardiac muscle. Though several cases have now been reported, and characteristic electrocardiographic findings have been described, there are relatively few reports of the haemodynamic and angiographic features of the disease.

In this report, 2 cases are described with distinctive angiographic features which may be of value in the differentiation from other forms of myocardial disease.

Case reports

Case 1

The patient was the fourth child in a family with no history of previously affected children. Poor muscle tone was apparent in the neonatal period and the child was seen at the age of 3 months in a neurology clinic because of delay in gross motor milestones. On examination no abnormality was present in the central nervous system, apart from severe hypotonia. The heart sounds were normal and there was no cardiac bruit. Subcostal and intercostal recession was present and shortly after admission the child developed signs of congestive cardiac failure. The chest x-ray film showed cardiomegaly (cardiothoracic ratio 0.6) with normal pulmonary vascularity, and the electrocardiographic findings reported in the Table were consistent with those previously reported in this condition (Caddell and Whittemore, 1962; Hohn and Lambert, 1968).

Echocardiogram

The echocardiogram showed considerable thickening of the interventricular septum (1.4 cm) and posterior left ventricular wall (1.0 cm) compared with the normal values (Meyer, 1977). Motion of the interventricular septum and anterior mitral valve leaflet was normal. The left ventricular end-diastolic and end-systolic dimensions were within the normal range at 2.0 cm and 1.4 cm, respectively, and the percentage change in left ventricular dimension in systole calculated by the method of Gutgesell et al. (1977) was 30 per cent. This falls at the

Received for publication 15 May 1978

<table>
<thead>
<tr>
<th>Electrocardiographic data</th>
<th>Catheterisation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Rhythm</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Sinus</td>
</tr>
<tr>
<td>2</td>
<td>Sinus</td>
</tr>
</tbody>
</table>

Table: Electrocardiographic and haemodynamic data
Unusual angiographic appearances of the left ventricle in 2 cases of Pompe's disease

Ventricular angiogram evidence of left ventricular outflow whereas the left ventricle was normal.
The trabeculation was prominent, and the septal surface appeared smooth. No evidence of left ventricular obstruction was present. Cineangiograms were obtained from the left and right ventricles. The left ventricular wall was considerably thickened and an abnormally prominent trabecular pattern was present (Fig. A). There was no evidence of left ventricular outflow tract obstruction and the coronary arteries were normal. The right ventricle showed a similar abnormal trabecular pattern. Though the end-diastolic volume of the left ventricle was high, in this patient left ventricular function assessed angiographically was only moderately impaired.

The diagnosis of type II glycogenosis was confirmed by assay of leucocyte α1-4 glucosidase (acid maltase).

Case 2
The patient is the second child of healthy parents with no history of previously affected children. At the age of 4 months the child was admitted to hospital because of poor feeding and respiratory problems. Physical examination showed obvious hypotonia but no other abnormality in the central nervous system. A grade 2/6 systolic murmur was present at the left sternal border and a third sound was heard at the apex. Evidence of congestive heart failure was present. The chest x-ray film showed considerable cardiomegaly (cardiothoracic ratio 0.7) and the electrocardiographic findings are shown in the Table.

Cardiac catheterisation and angiography
The investigation was performed at the age of 4 months under local anaesthesia. No evidence of left-to-right shunting was found but the foramen ovale was patent. Continuous pressure recording during withdrawal showed no gradients across either the left or right ventricular outflow tracts. Cineangiography from the left ventricle (Fig. B) showed the ventricle to be dilated and poorly functioning. The abnormal trabecular pattern seen in case 1 was again apparent, and the ventricular wall was considerably thickened. No evidence of subaortic stenosis was seen and the coronary arteries were normal.

The diagnosis of type II glycogenosis was confirmed by assay of leucocyte α1-4 glucosidase.

Discussion
Relatively few patients with type II glycogenosis have been investigated by cardiac catheterisation
and angiography and, among those studied, varying patterns of abnormality have been recorded. Obstruction to left or right ventricular outflow caused by hypertrophy of the interventricular septum has been reported in several cases (Hohn et al., 1965; Rees et al., 1976) but is not universally present. When present, left ventricular outflow obstruction may be severe and surgical treatment has been attempted in 1 case (Ehlers et al., 1962).

The angiographic features of the condition have been described in 6 patients. Ruttenberg and colleagues (1964) described the findings in 2 patients studied by venous angiography, and contrasted the poor left ventricular contractility seen in 1 patient with the relatively good ventricular function seen in the second patient. At necropsy the first patient proved to have associated endocardial fibroelastosis. Hohn et al. (1965), Hernandez et al. (1966), and Rees et al. (1976) each studied single cases in which left ventricular contractility was good. The sixth case, reported by Nihill et al. (1970), had a poorly functioning left ventricle, assessed by follow up after a right ventricular angiogram.

Our 2 cases are of particular interest, since an abnormally prominent trabecular pattern was present on the left ventricular angiogram of both patients. Prominent trabeculation has not previously been reported as a feature of the left ventricular angiogram in this condition, but was noted on the right ventricular angiogram of the case described by Hernandez et al. (1966) and appears to be present to a lesser extent in the left ventricular angiogram illustrated in the report of Nihill et al. (1970). Pathological studies have shown a high incidence of endocardial fibroelastosis in cases of Pompe's disease (Dincsoy et al., 1965). Review of the published cases suggests that those cases with a dilated non-compliant left ventricle are likely to have associated endocardial fibroelastosis, whereas when the ventricle is contracting effectively outflow tract obstruction is more frequent.

During the investigation of infants with pronounced hypotonia and evidence of cardiac abnormality, the presence of distinct trabeculation in the left ventricle should alert the investigator to the possibility of glycogen storage disease of the heart.

The authors thank Dr L. Rosenbloom and Dr J. Owen for permission to study patients under their care; Dr R. Galloway for permission to reproduce the angiograms; and the Department of Biochemistry, Charing Cross Hospital, for performing the enzyme assay.

References

Requests for reprints to Dr J. L. Wilkinson, Royal Liverpool Children's Hospital, Myrtle Street, Liverpool L7 7DG.
Unusual angiographic appearances of the left ventricle in 2 cases of Pompe's disease (glycogenosis type II).
D F Dickinson, W T Houlsby and J L Wilkinson

Br Heart J 1979 41: 238-240
doi: 10.1136/hrt.41.2.238

Updated information and services can be found at:
http://heart.bmj.com/content/41/2/238

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/