Prognosis of patients paced for chronic atrioventricular block

WILLIAM GINKS, AUBREY LEATHAM, AND HAROLD SIDDONS

From the Department of Cardiology, St George's Hospital, Hyde Park Corner, London

SUMMARY Between the years 1960 and 1974, 839 patients were paced for chronic complete atrioventricular block.

Analysis of survival compared with the general population showed that 170 deaths were expected according to standard mortality tables and 288 actually occurred, giving a ratio of actual to expected deaths of 1·7:1.

Patients with a definite history of myocardial infarction showed a higher than average mortality when paced. Mortality was not influenced whether heart block was constant or intermittent, whether the ventricular rate was below or above 40/minute, or whether QRS duration was greater or less than 0·1 second.

Analysis of the age groups paced disclosed the most important correlations. Between the ages of 80 and 89 years paced patients could expect to survive as long as others of the same age without heart block. There was, however, a very high mortality ratio of 4·5:1 for 90 patients in the age group 50 to 59 years. The reason for the high mortality ratio was uncertain but it may have been the result of a greater incidence of underlying coronary artery disease.

In 1974, Siddons analysed the survival of patients paced for chronic complete heart block. The comparison was made of 649 paced patients and 113 patients who were unpaced despite chronic atrioventricular block, and the comparison was also made with the survival pattern of the general population. Survival of the paced patients was much better than that of the unpaced group, despite the fact that the unpaced patients were selected as 'good risk cases' in the early 1960's before pacing had become a standard procedure. It was noted that in the first year after the start of pacing the mortality was higher than in subsequent years. It was also noted that survival rate after this first year of pacing was very close to that of the general population matched for age and sex, and for these reasons a more detailed statistical study of the survival of paced patients was undertaken.

Methods

The records of all patients with complete heart block, paced on a long-term basis, were analysed with regard to age and symptoms on initial presentation. In each case attention was drawn to a previous history of syncope, angina, myocardial infarction, and cardiac failure, though in a number of instances some features of the previous history were inadequately documented and analysis of all 839 patients was, therefore, incomplete. Examination of the electrocardiogram was also undertaken in patients where a complete 12 lead electrocardiogram before pacing was available for review. Patients were categorised according to the type of idioventricular rhythm; patients with complete heart block and an idioventricular rhythm with left anterior hemiblock had a mean frontal QRS of greater than 30°; those with an idioventricular rhythm of right bundle-branch block type had a QRS duration of 0-12 s or greater and an rSR’ in lead V1; those with an idioventricular rhythm of left bundle-branch block type had a QRS of 0-12 s or greater and a broad monophasic R wave in lead V6 (New York Heart Association, 1969).

Patients paced for other conditions such as sinus atrial disease without atrioventricular block were excluded. In addition, patients with acute infarction block with early return to sinus rhythm were excluded but we have included a few cases who continued in complete heart block after in-
A detailed statistical analysis of the mortality of paced patients was made by the Swiss Re-Insurance Company's Statistical Department. The figures for the general population are taken from the Registrar General's report of 1968 for the South East of England from which the paced patients were drawn.

Results

There were 839 patients paced for chronic atrioventricular block with a presenting symptom of syncope in nearly all cases. The average observation period was 3-4 years and the follow-up to 31 December 1974 was 98 per cent complete. There were 504 men and 335 women.

The analysis of survival compared with the general population is shown in Table 1. In the general population 169-9 deaths were expected according to the standard mortality tables but 288 deaths actually occurred. The ratio of actual over expected deaths of the population of the same age and sex was therefore 1-7:1. This is the average mortality ratio for the whole of the paced series.

In the first year of pacing, there was an extra mortality amounting to a ratio of 2-6:1, with 114 deaths when 43-8 were expected in the general population. The outlook for patients who were paced for 5 years matched almost exactly that of the general population. In the first 5 years of our experience (1960 to 1965) during which 105 patients were paced, the outlook was worse than since that date.

As expected those patients with a previous history of myocardial infarction showed a higher than average mortality.

A history of syncope occurred in 703 cases and may have been expected to carry a higher mortality than in the 132 cases without syncope, but there was little difference. Whether the atrioventricular block was constantly present or intermittent, or whether the ventricular rate was below or above 40 did not influence mortality. Though the mortality of women is lower than that of men in the general population, in the age groups considered, a similar mortality ratio between the two sexes was seen in the paced series.

It was hoped that analysis of the electrocardiogram before pacing was instituted might give some indication of prognosis but there was no significant difference when we analysed groups consisting of complete heart block with an idioventricular rhythm of right bundle-branch block type, complete heart block with a QRS of 0-1 s or less, or
Table 2 Electrocardiographic findings related to long-term prognosis

<table>
<thead>
<tr>
<th></th>
<th>No. of patients</th>
<th>Actual deaths</th>
<th>Expected deaths</th>
<th>Mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete block with RBBB</td>
<td>437</td>
<td>150</td>
<td>94.8</td>
<td>1.61</td>
</tr>
<tr>
<td>Complete block with LBBB</td>
<td>151</td>
<td>49</td>
<td>30.8</td>
<td>1.61</td>
</tr>
<tr>
<td>Complete block</td>
<td>99</td>
<td>26</td>
<td>16.3</td>
<td>1.61</td>
</tr>
<tr>
<td>Complete block QRS 0.1 s or less</td>
<td>640</td>
<td>225</td>
<td>134.6</td>
<td>1.71</td>
</tr>
<tr>
<td>Complete block QRS more than 0.1 s</td>
<td>324</td>
<td>120</td>
<td>68.6</td>
<td>1.81</td>
</tr>
</tbody>
</table>

*Of the 839 patients reviewed in this series the prepping electrocardiogram was not available for analysis in 61 patients and 39 patients had normal conducted sinus rhythm.

Table 3 Mortality in 128 unpaced patients

<table>
<thead>
<tr>
<th>Age when first seen (y)</th>
<th>No. of patients</th>
<th>Actual deaths</th>
<th>Expected deaths</th>
<th>Mortality ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-69</td>
<td>67</td>
<td>30</td>
<td>7.3</td>
<td>4.1:1</td>
</tr>
<tr>
<td>70-89</td>
<td>61</td>
<td>37</td>
<td>15.4</td>
<td>2.4:1</td>
</tr>
</tbody>
</table>

The most important correlations were found when analysing the age groups paced (Table 1). These figures suggest that patients between the ages of 80 and 89 years when paced can expect to live as long as others of the same age and sex without heart block. There was, however, a very high mortality ratio of 4.5:1 for the 90 patients in the age group 50 to 59 years. This higher mortality ratio was also apparent in the very much smaller series of unpaced patients (Table 3). This analysis was based on 128 patients observed unpaced for a minimum period of 6 months. Of the 128 patients, 52 were subsequently paced and are thus included in both the unpaced and paced series.

Discussion

The higher mortality in the first year of pacing compared with subsequent years is similar to that reported by Sowton (1967) and Edhag (1969) and is largely the result of underlying myocardial or coronary disease, the complications of the surgical procedure, and sudden death sometimes known to be caused by ventricular fibrillation; it also includes a few deaths from technical failure of the pacing system. In addition, the high mortality in the early years of our pacing experience (before 1965) is similar to that of others when pacing was undertaken by the epicardial route. A detailed study of reports from this period suggests that a significant number of deaths were directly related to thoracotomy and were the result of chest complications and postoperative sepsis. Our own postoperative mortality with methods using thoracotomy was 8 in 59 patients (Harris et al., 1965) as opposed to 1 in 49 patients with pacemaker implants associated with endocardial electrodes (Bluestone et al., 1965).

Since a proportion of deaths are sudden despite pacing, we reviewed a variety of prepping features including syncope, previous myocardial infarction, heart failure, and the electrocardiographic appearances in relation to eventual prognosis. As noted by Cosby et al. (1965) the presence or absence of previous myocardial infarction was the critical factor in determining prognosis and none of the other clinical or electrocardiographic indices were significantly related to long-term survival.

The most interesting feature of this study was revealed when survival was correlated with the age at which the patient was first paced. During the course of follow-up, in the group as a whole, approximately 1 in 3 patients had died irrespective of the age when first paced (Table 1). The poor prognosis of the patients under 60 years only becomes apparent when compared with patients of the same age in the general population without heart block. The relatively poor prognosis in the younger patient paced for complete heart block is presumably the result of the presence of additional heart disease such as coronary artery disease or congestive cardiomyopathy, whereas in the older patient heart block is commonly associated with idiopathic bundle-branch fibrosis without additional cardiac pathology (Davies, 1971).

Previous reports from our group have shown how difficult it is in life to determine the aetiology of atrioventricular block because once left bundle-branch block or complete heart block has developed the electrocardiogram is usually unhelpful (Harris et al., 1969; Chatterjee et al., 1970). In a recent communication (Siddons, 1974) we have analysed the causes of death in 145 long-term paced patients: 33 per cent of deaths were attributed to cardiovascular complications such as congestive heart failure, myocardial infarction, and cerebrovascular accidents; in 31 per cent of cases death was the result of unrelated causes such as malignancy and pneumonia; late sudden death occurred in 23 per cent of patients, and death was attributed to pacing in 8 per cent of the series. Unfortunately standard necropsy procedures rarely provide definite evidence of the aetiology of atrioventricular block or of the mechanisms of death. A detailed necropsy including coronary angiography and a study of serial sections of the conducting tissue has been carried out in...
130 patients at our institution paced for chronic atrioventricular block (M. J. Davies, 1978, personal communication). The pathology of the underlying atrioventricular block was considered to be a result of idiopathic bundle-branch fibrosis in 43 per cent of cases; 24 per cent of patients had severe coronary artery disease, and block was associated with diffuse cardiomyopathy in 11 per cent of cases. The incidence of coronary artery disease as a cause of death in paced chronic heart block varies widely. Robboy et al. (1969) recorded 7 necropsies, in 3 of which acute myocardial infarction was considered the cause of death. Donmoyer et al. (1967) reported 17 deaths, 4 of which were attributable to myocardial infarction with necropsy confirmation in 3. Edhag (1969) reviewed the mode of death in 62 of 260 patients paced for complete heart block. Myocardial infarction was shown at necropsy in 23 (44%) of the 52 patients coming to necropsy, and infarction was estimated to be less than 2 weeks old in 17 of the 23 patients.

Although we are uncertain at the present time as to the cause of the high mortality ratio in patients paced for complete heart block in middle age, the increased risk of death may reflect a higher incidence of ischaemic heart disease as the cause of the atrioventricular block and this possibility needs further investigation. When considering the prognosis of paced chronic heart block it is therefore important to consider the age group involved. For those patients who have none of the adverse features, that is those who are aged 60 to 89 years, first paced after 1965, and with no previous history of myocardial infarction, the expectation of life if paced does not differ from that of the general population of the same age and sex without heart block.

References

Requests for reprints to Dr William Ginks, Department of Cardiology, St George's Hospital, Hyde Park Corner, London SW1X 7EZ.
Prognosis of patients paced for chronic atrioventricular block.

W Ginks, A Leatham and H Siddons

Br Heart J 1979 41: 633-636
doi: 10.1136/hrt.41.6.633

Updated information and services can be found at:
http://heart.bmj.com/content/41/6/633

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/