Patterns of atrial activation during right ventricular pacing in patients with concealed left-sided Kent pathways

From the Cardiology Department, St. Bartholomew’s Hospital, London

SUMMARY A ‘concealed’ accessory pathway was suspected in 12 patients because of eccentric left atrial activation during tachycardia. Retrograde conduction during ventricular pacing may occur over the atrioventricular node, the accessory pathway, or both. There were 4 patterns of ventriculoatrial conduction in response to ventricular extravastimuli (V₂) at various coupling intervals: (1) exclusive accessory pathway conduction throughout the cardiac cycle in 2 patients; (2) exclusive accessory pathway conduction at long coupling intervals and exclusive atrioventricular node conduction at short coupling intervals in 2 patients; (3) variably fused accessory pathway/atrioventricular node conduction at long coupling intervals but exclusive accessory pathway conduction at short coupling intervals in 4 patients; (4) fused accessory pathway/atrioventricular node conduction at long coupling intervals but exclusive atrioventricular node conduction at short coupling intervals in 4 patients.

With increased prematurity of V₂ the ventricle to right atrial interval prolonged conspicuously in 11 of 12 patients whereas the ventricle to left atrial interval remained constant until the refractory period of the accessory pathway in all but 2 instances where intraventricular delay occurred. This study emphasises the importance of left atrial recordings in these patients.

It is now well recognised that concealed ventriculoatrial anomalous pathways provide the anatomical substrate for a large proportion of paroxysmal re-entrant tachycardias (Slama et al., 1973; Spurrell et al., 1974; Rowland et al., 1977). These pathways are designated ‘concealed’ because they do not conduct anterogradely and therefore there are no electrocardiographic signs of ventricular pre-excitation. They do, however, produce atrial pre-excitation in response to ventricular stimulation. The degree of atrial pre-excitation via a concealed accessory pathway is dependent upon tissue refractoriness and conduction times from the point of ventricular stimulation to the atrial recording site. Constancy of the ventriculoatrial conduction time has been used as a criterion for conduction in an anomalous ventriculoatrial pathway, but evidence in patients with overt Wolff-Parkinson-White syndrome (Tonkin et al., 1975; Sung et al., 1977a) suggests that this criterion taken by itself may result in underdiagnosis of concealed ventriculoatrial pathways.

This study was designed to investigate retrograde conduction patterns in patients with concealed ventriculoatrial pathways.

Patients and methods

The 12 patients were admitted for investigation of recurrent paroxysmal tachycardias. Clinical details are summarised in Table 1. In all patients physical examination, chest radiography, and routine haematological investigations were normal. In 5 patients the PR interval was short and in 7 patients it was normal. The QRS complex during sinus rhythm was normal in all patients.

All patients were studied in the post-absorptive, non-sedated state and medications were discontinued at least 72 hours before study. Under local anaesthetic, 4 bipolar USCI electrode catheters with 1 cm interelectrode distance were introduced via the femoral vein and positioned in the right ventricular apex, against the septal leaflet of the tricuspid valve and in the high right atrium (2 catheters). A quadripolar USCI catheter with 1 cm interelectrode distances, was inserted via the left
Atrial activation in concealed WPW

Table 1

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age, sex</th>
<th>symptoms</th>
<th>PR (s)</th>
<th>QRS</th>
<th>Documented arrhythmias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48, M</td>
<td>Palpitation</td>
<td>0-20</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>2</td>
<td>40, F</td>
<td>Palpitation and dizziness</td>
<td>0-11</td>
<td>N</td>
<td>SVT, AF</td>
</tr>
<tr>
<td>3</td>
<td>21, F</td>
<td>Palpitation</td>
<td>0-12</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>4</td>
<td>50, M</td>
<td>Palpitation</td>
<td>0-18</td>
<td>N</td>
<td>SVT, AF</td>
</tr>
<tr>
<td>5</td>
<td>41, M</td>
<td>Palpitation</td>
<td>0-12</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>6</td>
<td>47, F</td>
<td>Palpitation</td>
<td>0-20</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>7</td>
<td>39, M</td>
<td>Palpitation</td>
<td>0-19</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>8</td>
<td>54, F</td>
<td>Palpitation</td>
<td>0-21</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>9</td>
<td>40, F</td>
<td>Palpitation</td>
<td>0-20</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>10</td>
<td>47, M</td>
<td>Palpitation</td>
<td>0-12</td>
<td>N</td>
<td>SVT</td>
</tr>
<tr>
<td>11</td>
<td>63, M</td>
<td>Palpitation</td>
<td>0-11</td>
<td>N</td>
<td>SVT, AF</td>
</tr>
<tr>
<td>12</td>
<td>15, F</td>
<td>Palpitation</td>
<td>0-16</td>
<td>N</td>
<td>SVT</td>
</tr>
</tbody>
</table>

N, normal; SVT, supraventricular tachycardia; AF, atrial fibrillation.

basilic vein and positioned in the coronary sinus. Electrograms from the intracardiac catheters were recorded on a 16-channel Elema Mingograf recorder at a paper speed of 100 mm/s together with surface electrocardiographic leads I, aVF, V1, and V6. Intracardiac signals were filtered between 50 and 700 Hz. Stimulation was performed using a Devices 4270 isolated stimulator with pulse widths of 1.5 to 2 ms at a voltage approximately twice the diastolic threshold.

In all patients anterograde and retrograde conduction studies were performed using the extra-stimulus technique (Durrer et al., 1967). Retrograde conduction was studied during right ventricular apical pacing. The ventriculoatrial conduction times were measured from the onset of ventricular activation to the earliest clearly distinguishable atrial electrogram in the right atrium (V-RA) and coronary sinus (V-LA). The earliest point of atrial activation during sustained tachycardia was taken as indicating the approximate location of the accessory pathway. This point was determined by coronary sinus withdrawal mapping. The atrial activation sequence during tachycardia was considered to represent atrial depolarisation by exclusive conduction in the accessory pathway (Fig. 1).

Rapid atrial pacing at right and left atrial sites was performed in all patients. In 7 patients atrial fibrillation was induced electively. Anterograde

![Excluded V-A conduction via accessory pathway](image)

Fig. 1 Comparison of atrial activation sequence after a ventricular premature beat (left panel) and during tachycardia (right panel) in case 3 (group 3). A ventricular premature stimulus (S2) at 260 ms coupling interval after a regular paced sequence (S1-S1) results in retrograde atrial activation (A') identical to that seen during re-entrant tachycardia.

HRAE, high right atrial electrogram; PCSE, proximal coronary sinus electrogram; DCSE, distal coronary sinus electrogram; HBE, His bundle electrogram; RVAE, right ventricular apex electrogram (not recorded during ventricular pacing). I, AVF, V1, V6 = surface electrocardiographic leads.
conduction in the accessory pathway was excluded by the lack of pre-excitation in response to atrial stimulation near the accessory pathway (Boineau et al., 1973; Denes et al., 1977) and in 7 patients by the absence of pre-excitation during atrial fibrillation. Retrograde conduction curves were obtained by plotting the values of V-LA and V-RA and the corresponding intervals between successive atrial electrograms in response to the premature stimulus V₂ against the coupling interval V₁-V₂ of the extra-stimulus.

Results

The results are summarised in Table 2.

In all 12 patients re-entrant atrioventricular tachycardia was initiated by a single atrial premature stimulus. In 5 patients a right ventricular apical stimulus was also effective in initiating tachycardia. Earliest atrial activation during tachycardia was in the coronary sinus recording in all 12 patients: proximal coronary sinus in 7 patients and distal coronary sinus in 5 patients. The low right atrial electrogram could be clearly seen during tachycardia in all 12 patients and followed the earliest atrial electrogram in the coronary sinus region.

Retrograde atrial activation patterns during right ventricular pacing and programmed extrastimulation were of 4 different types (Table 2).

Table 2

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Site of AP</th>
<th>Mode of initiation of tachycardia</th>
<th>Pattern of atrial activation (VPBs)</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distal CS</td>
<td>APB</td>
<td>F → AVN</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Distal CS</td>
<td>APB, VPB</td>
<td>F → AP</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Proximal CS</td>
<td>APB</td>
<td>F → AP</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Proximal CS</td>
<td>APB</td>
<td>AP → AVN</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Distal CS</td>
<td>APB</td>
<td>F → AVN</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Proximal CS</td>
<td>APB</td>
<td>AP → AVN</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Proximal CS</td>
<td>APB, VPB</td>
<td>AP → AP</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Proximal CS</td>
<td>APB, VPB</td>
<td>F → AP</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Distal CS</td>
<td>APB</td>
<td>F → AVN</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Proximal CS</td>
<td>APB</td>
<td>F → AVN</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>Proximal CS</td>
<td>APB</td>
<td>AP → AP</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Distal CS</td>
<td>APB</td>
<td>F → AP</td>
<td>3</td>
</tr>
</tbody>
</table>

AP, accessory pathway; CS, coronary sinus; AVN, AV nodal; F, fusion; APB, programmed atrial premature beat; VPB, programmed ventricular premature beat.

Fig. 2 Retrograde conduction curves from patients representing each of the 4 groups. For discussion see text. LRA, low right atrial electrogram; HRA, high right atrial electrogram; PCS, proximal coronary sinus electrogram; DCS, distal coronary sinus electrogram; TZ, tachycardia zone.

GROUP 1

In this group of 2 patients, the ventriculoatrial intervals remained constant at all coupling intervals (V₁-V₂) of ventricular extrastimuli (V₂). In 1 patient there was a small but equal increase in the V-LA and V-RA conduction times at very short coupling intervals. The relation between the right and left atrial electrogams did not change. In both patients tachycardia was initiated by a programmed atrial or ventricular premature beat. The atrial activation sequence during tachycardia was identical to that observed during programmed ventricular extrastimulation. The retrograde conduction curve from one of these patients is shown in Fig. 2a.

GROUP 2

In 2 patients, the V-LA and V-RA conduction intervals remained more or less constant at long coupling intervals of V₂. At shorter coupling intervals there was a sudden increase in the V-LA and V-RA intervals. At all values of V₁-V₂ shorter than that which resulted in the sudden increase in the ventriculoatrial intervals, there was a progressive smooth increase in the ventriculoatrial conduction times without a further change in the relation of the atrial electrograms (Fig. 2b). In this group,
Atrial activation in concealed WPW

tachycardia could not be initiated by a ventricular premature stimulus but was reliably initiated by a single atrial premature stimulus. In 1 of these patients the atrial activation sequence during tachycardia was identical to that observed with premature beats in the range of coupling intervals which resulted in constant ventriculoatrial intervals. In the other patient (case 4), the recordings were difficult to interpret partly because the low right atrial electrogram was not clearly seen. These recordings are shown in Fig. 3 and the results presented graphically in Fig. 4.

GROUP 3
In 4 patients various degrees of atrial fusion (V-LA and V-RA not changing concordantly) were seen in response to longer coupling intervals of V2. As the coupling interval of V2 was reduced, the V-RA interval increased gradually but the V-LA interval remained constant. Further decreases in the V1-V2 interval resulted in an attenuation of the increase in V-RA time which gradually plateaued, forming a curve parallel to the V-LA curve (Fig. 2c). The V-LA interval remained constant throughout in 2 patients, with a small increase in V-LA and V-RA intervals at very short coupling intervals in 1 patient. In case 3 this basic pattern was modified (Fig. 5). At coupling intervals greater than 360 ms (Fig. 5 and 6) low right atrial activation was progressively delayed as V1-V2 was decreased. At 360 ms, there was a sudden increase in the V-RA interval which remained constant with coupling intervals, V1-V2 between 360 and 320 ms. The V-LA interval remained unchanged. At V1-V2 of 300 ms the V-RA interval shortened again and increased as V2 become more premature. Coupling

Fig. 3 Programmed ventricular premature stimuli (S2) at coupling intervals (S1-S2) of 430 ms (upper left), 300 ms (upper right), and 260 ms (lower left) in case 4. For discussion see text.
A', retrograde atrial electrogram;
H, His potential.
sudden increase produced a progressive concordant increase in V-LA and V-RA intervals (Fig. 2d).

Tachycardia could be initiated by atrial extrasustiuli but ventricular premature beats were ineffective. The atrial activation sequence during tachycardia was different from that observed in response to a ventricular extrastimulus at any coupling interval.

Discussion

Four distinct patterns of retrograde conduction were observed in this series of patients. These basic patterns are determined by the relative contribution to atrial activation over the normal and accessory pathways.

(1) Patients in group 1 showed constancy of the ventriculatoatrial intervals at all coupling intervals of V2 as a result of predominant conduction in the accessory pathway (Fig. 2a) (Narula, 1974; Wellens and Durrer, 1974). The small but equal increase in V-RA and V-LA intervals in 1 patient was attributed to intraventricular delay.

(2) Conduction over the accessory pathway predominated at longer coupling intervals of V2 in patients in group 2. When the V1-V2 interval was reduced to within the retrograde effective refractory period of the accessory pathway the sudden increase in V-RA and V-LA intervals and altered atrial activation sequence reflects continued conduction in the normal pathway (Fig. 2b).

(3) Conduction over both the normal and accessory pathways resulting in atrial fusion at long coupling intervals of V2 was observed in patients in group 3 (Fig. 2c). Conduction in the accessory pathway results in a constant V-LA interval throughout, while delayed conduction in the normal pathway results in a gradual increase of the V-RA interval.

While this delay exceeds the conduction time from the accessory pathway to the right atrium (at the site of recording) the V-RA interval parallels the V-LA interval. In 2 patients the beginning of the V-RA 'plateau' is coincident with the upper limit of the tachycardia zone suggesting that block rather than delay in the normal pathway allowed capture of the right atrium as a result of spread of activation from the accessory pathway.

(4) Atrial fusion was observed at all coupling intervals of V2 until block in the accessory pathway in patients in group 4 (Fig. 2d and Fig. 7). The gradual increase in the V-RA interval as V1-V2 was increased indicates atrial activation as a result of conduction over the normal pathway. In contrast, the V-LA interval remains constant until block occurs in the accessory pathway. Continued conduc-

Fig. 4 Retrograde conduction curve of case 4 (group 2). For clarity H1-H2 intervals are omitted; the V-H interval is plotted on the lower part of the graph. For discussion see text.
Atrial activation in concealed WPW

Fig. 5 Programmed ventricular premature stimuli (Sa) at coupling intervals of 430 ms (upper left), 360 ms (upper right), 300 ms (lower left), and 260 ms (lower right) in case 3. For discussion see text.
short coupling intervals of V₂. Of the other 4 patients with proximally located pathways, 2 disclosed predominant accessory pathway conduction throughout (group 1) and 2 had the pattern typical of group 2.

Of the 5 patients with short PR intervals, 4 patients had atrial fusion patterns at long coupling intervals of V₂ and 1 patient showed exclusive accessory pathway conduction throughout. Retrograde conduction in an atrionodal pathway may result in earliest atrial activation in the region of the proximal coronary sinus (Camm et al., 1978). In 2 patients this possibility was excluded by the finding of earliest atrial activity in the distal coronary sinus electrogram. In the 3 other patients with proximally situated bypass tracts a ventricular premature stimulus delivered at the time of the His bundle potential resulted in exact atrial capture. This observation excludes retrograde conduction in an atrionodal pathway (Ward et al., 1978) and confirms ventriculoatrial conduction in a direct ventriculoatrial connection (Coumel and Attuel, 1974; Zipes et al., 1974; Neuss et al., 1975; Sellers et al., 1976).

Tachycardia could not be initiated by a ventricular premature beat in any patient in whom there was evidence of normal pathway ventriculoatrial conduction at all coupling intervals of V₂ (group 2 and group 4). It is suggested that re-entry towards the ventricles over the atrioventricular node-His pathway was prevented by continued retrograde conduction in this pathway. Ventricular premature beats were effective in initiating tachycardia in 2 of the 4 patients who showed exclusive accessory pathway conduction only at short coupling intervals (group 3). In these patients, the upper limit of the

Fig. 6 Retrograde conduction curve from case 3 (group 3). For discussion see text. G, gap in retrograde His Purkinje/atrioventricular nodal conduction.

are similar to those seen at short coupling intervals of V₂ when accessory pathway conduction predominates. In effect, there is a gap in ventriculo-atrial conduction in the normal pathway (Akhtar et al., 1974) but this gap is concealed by continued conduction in the accessory pathway. A similar case has been described by Wellens (1977).

Svensson et al. (1975) studied patterns of ventriculoatrial conduction in patients with overt Wolff-Parkinson-White syndrome and found fusion patterns only in patients with lateral bypass tracts. In the 5 patients in our series with accessory pathways in the region of the distal coronary sinus, atrial fusion was demonstrated at long coupling intervals of V₂ with exclusive accessory pathway conduction at short coupling intervals in 2 patients and exclusive atrioventricular nodal conduction at short coupling intervals in 3 patients. In contrast to the observation of Svensson et al. (1975) we showed atrial fusion patterns in 3 of the 7 patients with proximally located bypass tracts, 2 of whom showed exclusive bypass tract conduction only at
tachycardia zone coincided with the upper limit of the V-RA interval plateau. The inability of ventricular premature beats to initiate tachycardia in the other 2 patients in group 3 may be related to concealed retrograde invasion of the normal pathway at short coupling intervals (Wellens, 1977). These observations are similar to those made by Sung et al. (1977a) in patients with overt type A Wolff-Parkinson-White syndrome.

In the absence of accessory ventriculoatrial connections, atrial activation during ventricular pacing begins close to the atrioventricular node and spreads to more distant points (Amat-yl-Leon et al., 1976; Gallagher et al., 1977). The relative timing of atrial activation at different sites is determined by intra-atrial conduction times to the sites of recording. When two or more ventriculoatrial pathways are present the atrial activation patterns depend on the relative contribution to atrial depolarisation by each conduction pathway. The presence of two or more concealed ventriculoatrial accessory pathways may make interpretation difficult especially if these pathways have similar characteristics and location. Several determinants may interact to produce any given activation pattern (Fig. 7). Though we have seen 4 basic patterns of ventriculoatrial conduction in patients with concealed accessory pathways, other varieties may occur. For example, atrial fusion at all coupling intervals of V₃ was reported by Sung et al. (1977a) in 3 of 29 patients with type A Wolff-Parkinson-White syndrome. The presence of intra-atrial or intra-ventricular delay or gaps in ventriculoatrial conduction in the normal pathway (Akhtar et al., 1974) or accessory pathway may result in variations of basic patterns. In addition, the basic pattern may be modified by changes in the ventricular driving rate.

Retrograde atrial activation patterns may be important in the diagnosis and location of concealed accessory pathways especially in those patients in whom it may not be possible to initiate tachycardia at electrophysiologic study. It is clear that constancy of the ventriculoatrial interval is, by itself, an inadequate criterion for the diagnosis of concealed ventriculoatrial pathways. If the V-RA interval is considered, a progressive increase was shown in 8 patients (group 3 and group 4) and a sudden increase in 2 patients one of whom had intra-atrial delay. In the absence of left atrial recordings these V-RA patterns may have been reasonably attributed to conduction in the normal pathway alone. For this reason, it is important that atrial activity should be recorded from sites closely adjacent to both normal and accessory pathways.

Recently it has been re-emphasised that concealed accessory pathways may in fact be the anatomical substrate for tachycardias previously diagnosed as depending on intranodal re-entry (Barold and Coumel, 1977; Sung et al., 1977b; Pritchett et al., 1978). The distinction between these mechanisms is clearly of therapeutic importance particularly if surgical intervention is considered.

References

Requests for reprints to Dr D E Ward, Cardiac Department, St. Bartholomew’s Hospital, London EC1A 7BE.
Patterns of atrial activation during right ventricular pacing in patients with concealed left-sided Kent pathways.

D E Ward, A J Camm and R A Spurrell

Br Heart J 1979 42: 192-200
doi: 10.1136/hrt.42.2.192

Updated information and services can be found at:
http://heart.bmj.com/content/42/2/192

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/