Severe subpulmonary obstruction caused by an aneurysmal tissue tag complicating an infundibular perimembranous ventricular septal defect

M BONVICINI, G PIOVACCARI, F M PICCHIO
From Istituto di Malattie dell'Apparato Cardiovascolare dell'Università degli Studi di Bologna, Italy

SUMMARY A case of severe right ventricular obstruction caused by a huge aneurysmal tissue tag is described associated with a perimembranous ventricular septal defect with an infundibular extension.

Angiograms and surgical inspection clearly showed that the ventricular septal defect extended into the outlet septum. The distinctive feature of this case was the severity of the gradient related to the peculiar position of the aneurysmal tissue in the outlet portion of the ventricle.

We presume that such an aneurysm, however small it is, developing in association with a ventricular septal defect with an infundibular extension may be a potential cause of severe obstruction and should therefore be carefully followed in the ensuing years.

Aneurysms of the membranous septum, consisting of a fibrous tissue tag, are commonly found in patients with a ventricular septal defect and their appearance usually precedes a diminution or even spontaneous closure of the ventricular septal defect. Right ventricular outflow tract obstruction, usually not very severe, is one of the rare complications described in association with an aneurysm of the membranous septum.

The purpose of this communication is to present a case of a huge fibrous tissue tag associated with a perimembranous ventricular septal defect extending into the infundibular region and causing severe right ventricular outflow tract obstruction, which was observed 26 years after the first cardiac catheterisation.

Case report

A 36-year-old man known to have a heart murmur from the age of 6 months underwent cardiac catheterisation with angioiardiography at 13 years of age (1957), which showed a gradient of 30 mmHg between the right ventricle and pulmonary artery, but no left-to-right shunt at ventricular level. At right ventriculography a subpulmonary diaphragm was suspected. No left sided angiography was performed. At 31 years of age cardiac catheterisation was again performed because of increased right ventricular hypertrophy on the electrocardiographic examination, which showed a "transvalvular" gradient of 80 mmHg. A diagnosis of pulmonary stenosis was made, and the patient refused cardiac surgery.

Five years later he was sent to our institution because of the appearance of exertional dyspnoea. On examination the following signs were found: an "a" wave on the jugular pulse, a systolic thrill at the left sternal border, and a grade 4/6 pansystolic murmur with a crescendo/decrescendo configuration.

The electrocardiogram showed severe right ventricular hypertrophy with strain. A gradient of 105 mmHg across the outflow tract of the right ventricle without any left-to-right shunt was shown at cardiac catheterisation.

Right and left ventricular injections showed a huge septal aneurysm bulging into the right ventricular outflow tract (Fig. 1). Post-stenotic dilatation of the pulmonary infundibulum was also found. During surgery the right ventricle and the infundibular septum were seen to be hypertrophic, but the free anterior wall of the infundibulum was thin and dilated. There was a huge fibrous tissue tag anterior and superior to the anteroseptal leaflet of the tricuspid valve (Fig. 2). Two small defects were found at the apex of the aneurysm. An incision made between these two defects showed a perimembranous ventricular septal defect with an infundibular extension, 1.5 cm in diameter.
According to systemic emboli, conduction and rhythm disturbances, tricuspid regurgitation, and right ventricular outflow tract obstruction are rare complications of an aneurysm of the membranous septum.

Although every perimembranous ventricular septal defect can develop an aneurysm, this event is more frequently found in the ones that extend into the inlet or trabecular septum because of their proximity to the tricuspid septal leaflet.

The diagnosis of an aneurysm of the membranous septum can be detected by using elongated angiographic projections of the left ventricle, but now it can also be diagnosed by the use of two dimensional echocardiography.

A prolapsed aortic valve leaflet in a supracristal ventricular septal defect, however, has echocardiographic appearances similar to those of an aneurysm of the membranous septum and should therefore be carefully ruled out.

In our case the ventricular septal defect, as recently proposed, can be classified as perimembranous, extending into the infundibulum. In these particular types of defect the interventricular portion of the membranous septum is deficient and the defect extends anteriorly towards the infundibular septum.

It is easy to understand how an aneurysmal tissue tag which occludes an infundibular perimembranous ventricular septal defect can cause right ventricular outflow obstruction, quite possibly severe, if, as we have shown, the aneurysmal dimension is large.

The patient we have described shows how the development and severity of right ventricular outflow obstruction can be the result of a progressive growth of aneurysmal tissue in this peculiar position. Having reviewed the reported cases of an aneurysm of the membranous septum associated with right ventricular outflow tract obstruction, we suspect that the perimembranous ventricular septal defect had an infundibular extension, at least in the majority of these cases.

In a case previously reported of a 12-year-old patient, the gradient was 20 mmHg, which was approximately the same as the gradient found in the first haemodynamic study of our patient at a similar age. In another observation, the infundibular gradient was 60 mmHg whereas in the second study of our case the gradient was 80 mmHg (the ages of both cases were again similar). This, we believe, supports our hypothesis that the obstruction not only develops from an associated infundibular hypertrophy but also from the increase in the size of the aneurysm.

In conclusion, we think that every time a transinfundibular gradient, however small it may be, is recorded in a ventricular septal defect with an aneurysm of the membranous septum, the existence of a perimembranous defect with an infundibular exten-
Severe subpulmonary obstruction caused by an aneurysmal tissue tag

Fig. 2(A) The huge aneurysm (black arrow) is situated below the infundibular septum (IS). One of the small defects in the aneurysm is evident (open arrow). (B) After the incision of the aneurysm a perimembranous ventricular septal defect (D) with infundibular extension appears.

sion should be suspected. If, either with the use of elongated angiographic projections or with two dimensional echocardiography, this suspicion is confirmed, we think that these patients should be carefully followed for the possible development of right ventricular outflow tract obstruction.

We wish to thank Professor A Pierangeli and Dr P Mikus of the Cattedra di Chirurgia del Cuore e dei Grossi Vasi dell’Università di Bologna who performed the operation on this patient.

References

Requests for reprints to Dr Fernando M Picchio, Istituto di Malattie dell’Apparato Cardiovascolare, Policlinico S Orsola, Via Massarenti 9, 40138 Bologna, Italy.
Severe subpulmonary obstruction caused by an aneurysmal tissue tag complicating an infundibular perimembranous ventricular septal defect.

M Bonvicini, G Piovaccari and F M Picchio

Br Heart J 1982 48: 189-191
doi: 10.1136/hrt.48.2.189

Updated information and services can be found at:
http://heart.bmj.com/content/48/2/189

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/