Editorial

Br Heart J 1983; 49: 305-308

Converting enzyme inhibitors in hypertension and heart failure

H J DARGIE, S G BALL, A B ATKINSON, J I S ROBERTSON
From MRC Blood Pressure Unit and Department of Cardiology, Western Infirmary, Glasgow; and Metabolic Unit, Royal Victoria Hospital, Belfast

The renin-angiotensin-aldosterone system is intimately involved in the regulation of vascular tone, and is central to sodium homeostasis; the octapeptide angiotensin II, formed by the action of converting enzyme on the inactive precursor decapeptide angiotensin I, constricts arterioles, enhances sympathetic activity, and promotes sodium retention, both by direct renal actions and through the release of aldosterone.

Hypertension and cardiac failure are characterised by increased peripheral vascular tone and abnormal sodium and water excretion, though to what extent these changes reflect activity of the renin-angiotensin-aldosterone system is unclear. Both conditions respond to diuretics and vasodilators even though consequent stimulation of the renin-angiotensin-aldosterone system may ensue. Not surprisingly, therefore, the recent introduction of orally active converting enzyme inhibitors has generated much renewed interest in the role of the renin-angiotensin-aldosterone system in hypertension and cardiac failure. These drugs prevent the conversion of angiotensin I to angiotensin II. They may also have additional effects such as inhibition of degradation of the vasodilator peptide bradykinin. Though most of our knowledge concerning the effects of converting enzyme inhibitors in man stems from the use of captopril, preliminary work with the newer compound enalapril (MK421) suggests that it has similar pharmacological effects. Both drugs reduce plasma angiotensin II and aldosterone with reciprocal changes in plasma renin and angiotensin I concentrations. Sustained suppression of plasma angiotensin II has been seen using 150 mg captopril three times a day. Enalapril, which has a longer action, may be given less frequently. The associated early fall in blood pressure is the result of reduction in peripheral vascular resistance which is probably largely, though perhaps not entirely, the result of the reduction in plasma angiotensin II since restoration of the latter by infusion of exogenous angiotensin II does not reverse completely the hypotensive effects of captopril. With prolonged use, a further fall of pressure may occur over one to three weeks; this may be the partial result of antagonism of a slow pressor effect of angiotensin II.

Thus, there may be actions of converting enzyme inhibition on the systemic vasculature other than loss of the direct vasoconstrictor effect of angiotensin II; candidates for involvement in these mechanisms include bradykinin, prostanoids, and the sympathetic nervous system, while resetting of baroreflexes has also been suggested. Inhibition of bradykinin degradation by converting enzyme inhibitors could have two principal results; firstly, increased levels of bradykinin could directly result in vasodilatation; and, secondly, stimulation of prostaglandin E production could result in further vasodilatation. The evidence, however, for involvement of kinins or prostanoids in the pharmacological effects of converting enzyme inhibitors is conflicting.

In hypertension, converting enzyme inhibitors ought to be most effective when plasma angiotensin II is raised. Indeed, precipitous falls in pressure can occur when renin and angiotensin II are very high as in some patients with malignant phase hypertension, or after intensive diuretic therapy. Salt-depleted normal subjects show similarly enhanced responses to inhibition of converting enzyme. When captopril is administered to patients with renovascular hypertension, many of whom have increased plasma levels of renin and angiotensin II, there is an initial fall in blood pressure proportional both to the plasma concentration of renin and angiotensin II, and to the fall in angiotensin II after dosing. With long-term treatment, there is often a further reduction.

The haemodynamic effects of captopril in essential and renovascular hypertension are similar, comprising a fall in peripheral vascular resistance and cardiac...
filling pressure with no significant change in heart rate or cardiac output.16 Thus, converting enzyme inhibitors also reduce the blood pressure in patients with essential hypertension and their effects can be enhanced by diuretics.11 12 Indeed, a principal effect of this class of compounds could be facilitation of the hypotensive effect of diuretics since this action is limited by reactive stimulation of the renin-angiotensin system.13 17 As both sodium status and the renin-angiotensin system are critically involved in the maintenance of arterial pressure,18 19 the therapeutic use of a converting enzyme inhibitor, a diuretic, or the two together has obvious attractions both in theory and practice. Certainly in many patients resistant to conventional antihypertensives, the combination of a converting enzyme inhibitor with a diuretic has proved to be particularly effective.11 12

Increased peripheral vascular resistance also commonly accompanies heart failure, and vasodilators are now well established in its treatment. Plasma renin is raised in many such patients20 and thus specific interference with at least one of the mechanisms leading to vasoconstriction can be achieved with converting enzyme inhibitors. The acute haemodynamic effects of captopril in heart failure comprise an increase in stroke volume, cardiac output, and stroke work index associated with a fall in systemic vascular resistance, left ventricular filling pressure, pulmonary arterial pressure, and right atrial pressure. While total pulmonary vascular resistance falls because of a reduction in pulmonary capillary pressure, pulmonary arteriolar pressure is unaffected.21 24 The fall in right atrial pressure seems greater than would result from the modest increase in cardiac output, but evidence for a direct venodilator effect is conflicting and angiotensin II does not normally constrict veins.25 Qualitatively the effects of captopril are similar to those of prazosin, though captopril also reduces the heart rate.

The clinical effects of captopril in cardiac failure include symptomatic improvement21 22 26 (though these observations await confirmation in controlled trials) and an increase in maximum exercise capacity21 23 26; the rate pressure product at the end of this longer period of exercise is similar to or lower than control values, indicating more efficient energy utilisation.21 26 27 These observations have recently been confirmed in a single blind study27; longer term experience also is encouraging.21 23 26

Is captopril just another vasodilator? Even a casual glance at the varied physiological effects of angiotensin II tempts us to suspect that it may possess additional beneficial properties in heart failure. The acute haemodynamic effects correlate closely with the reduction in systemic vascular resistance and, though angiotensin II is a potent vasoconstrictor and its production is directly related to renin secretion, there is no consensus on the relation between plasma renin activity or concentration and the beneficial effect of captopril on cardiac function.22 24 This is less surprising when it is remembered that plasma renin can be normal in heart failure before treatment with diuretics; after diuretics, renin may rise, fall, or remain within the normal range.20 The increased systemic vascular resistance in heart failure in part may be the result of increased adrenergic activity either from a centrally mediated increase in sympathetic tone or possibly from a decrease in neuronal uptake of noradrenaline.28 Experimentally, angiotensin II can stimulate sympathetic activity in several ways both centrally and peripherally.29 30 Preliminary studies in heart failure show that plasma noradrenaline may fall during treatment with captopril31; but to what extent this reflects a direct action of angiotensin II on sympathetic pathways or is merely the result of improvement in cardiac function remains to be clarified.

Other effects of angiotensin II, inhibition of which could be beneficial in heart failure, include stimulation of aldosterone and vasopressin secretion. But after captopril, at least initially, weight gain may occur32 which can sometimes be pronounced. Perhaps reduction of renal perfusion pressure caused by the hypotensive effects of captopril, which occurs also in heart failure, exceeds the autoregulatory ability of the kidney to maintain renal blood flow and glomerular filtration rate. Moreover, while it is known that peripheral angiotensin II is effectively lowered by captopril, less is known about the suppression of the intrarenal formation of angiotensin II, and thus of modifications of tone in afferent and efferent arterioles, and the vas recta, or on tubular sodium reabsorption.13

We have been impressed with the clinical effects of captopril in patients with intractable heart failure but many questions remain unanswered. These include whether the drug will influence appreciably long term survival given the serious underlying pathology leading to myocardial failure. The one year mortality in heart failure is high and death is often sudden, presumably because of serious ventricular arrhythmia. Recent evidence suggests that improvement of ventricular function and reduction of left ventricular dimensions are associated with a decrease in ventricular arrhythmias.33

Reduction in blood pressure, the object of treatment in hypertension, also occurs during treatment of heart failure with captopril. Much lower pressures, however, are tolerated in heart failure, in which, in contrast to hypertension, there is no upward resetting of the pressor limits of autoregulation of cerebral blood flow.34 Thus, in heart failure, hypotension is usually asymptomatic. Orthostatic hypotension is
Converting enzyme inhibitors in hypertension and heart failure

rare, as is reflex tachycardia, though the latter can occur occasionally in hypertensive patients on standing. Plasma potassium increases probably because of aldosterone suppression and so potassium supplements and potassium sparing diuretics are usually contraindicated.

While these effects are to be expected with any converting enzyme inhibitor, there are some apparently specific adverse effects of captopril which have delayed its easy introduction into clinical practice. Skin rashes, fever, and transient loss of taste have been reported, which have usually resolved on withdrawal of treatment, or on occasion when treatment has continued. Proteinuria and membranous glomerulonephritis have also been reported but a recent review of renal biopsies from patients with hypertension, some of whom were receiving captopril, has emphasised the need for caution in attributing glomerular disease to drugs in the absence of pretreatment histology. Leukopenia and fatal agranulocytosis have been seen in a few cases, usually associated with serious intercurrent illness.

These side effects, which are similar to those observed with penicillamine, a drug which also has a sulphhydryl group, are almost certainly related to chemical structure rather than to mode of action. Captopril is excreted by the kidney and serious reactions usually have occurred in patients with renal impairment taking large doses of the drug. The dose response relations of captopril in hypertension and cardiac failure are not well defined but low doses (less than 150 mg per day), adjusted downwards if renal function is impaired, are probably adequate. These lower doses might well minimise side effects. The results of current clinical studies using converting enzyme inhibitors without a thiol group are awaited.

The converting enzyme inhibitors are likely to have a major impact on the future treatment of hypertension and heart failure. Not only have they provided a new therapeutic initiative, but also, and of perhaps greater interest, they have given us a novel and subtle pharmacological probe with which to investigate specific mechanisms in the pathophysiology of these diverse but often related conditions. As in hypertension, could there be subsets of patients with heart failure who will respond particularly well to these agents? Further, is it possible that stimulation of the renin-angiotensin system in early cardiac failure is a helpful compensatory mechanism, and that converting enzyme inhibition might at that stage be harmful? The answers to these and other questions await us in what promises to be a stimulating period of clinical research.

References

16 Wenting GJ, de Bruyn JHB, Man in ’t Veld AJ, Woitiez AJJ, Derkx FHM, Schalekamp ADH. Hemodynamic
26 Awan NA, Evenson MK, Needham, Win A, Mason DT.

Dargie, Ball, Atkinson, Robertson

Requests for reprints to Dr J I S Robertson, MRC Blood Pressure Unit, Western Infirmary, Glasgow G11 6NT.
Converting enzyme inhibitors in hypertension and heart failure.

H J Dargie, S G Ball, A B Atkinson and J I Robertson

Br Heart J 1983 49: 305-308
doi: 10.1136/hrt.49.4.305

Updated information and services can be found at:
http://heart.bmj.com/content/49/4/305.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/