Quantification of intracardiac shunts by gold-195m, a new radionuclide with a short half life

D L STONE,* R W BARBER,† O J M ORMEROD,* M C PETCH,* E P WRAIGHT†
From the Departments of Cardiology and Nuclear Medicine, *Papworth and †Addenbrooke’s Hospitals, Cambridge

SUMMARY Gold-195m, a radionuclide with a short half life (30.5 s) was used to quantify left to right intracardiac shunts. The results of this method were compared with those obtained with technetium-99m, a method that was validated against oximetry. In five patients the pulmonary to systemic flow ratio (> 3:1) obtained by both radionuclides indicated that the level of shunting was too high to be measured accurately. In one patient fragmentation of the bolus meant that no satisfactory gamma fit could be obtained. In the remaining 16 patients there was no significant difference between two successive 195mAu studies. The agreement between 99mTc results and 195mAu results was excellent. Oxygen administration, straight leg raising exercise, and the use of oblique projections did not affect the values of the pulmonary to systemic flow ratio. The technique of quantification of intracardiac shunts by 195mAu gives reproducible and accurate results and the low radiation dose means that it is suitable for use in children with suspected left to right shunts.

In recent years the quantification of intracardiac left to right shunts by radionuclide techniques has been successfully applied to children and adults.1-6 In this paper we compare the results obtained with gold-195m, a new radionuclide with a short half life (30.5 s) generated from mercury-195m,7 with those obtained with a technetium-99m sodium pertechnetate technique which we have validated against oximetry.

The low radiation dose of 195mAu means that several studies may be performed in the same patient. We have determined the feasibility of using 195mAu with a standard single crystal gamma camera and have assessed the effects of interventions on the results obtained.

Patients and methods

Patients
We studied 22 patients aged 6–63 years (mean 22·5) (Table 1). In all left to right intracardiac shunts were suspected. Informed consent was obtained from every patient or their parents.

Requests for reprints to Dr D L Stone, Department of Cardiology, Papworth Hospital, Papworth Everard, Cambridge CB3 8RE.

Accepted for publication 22 July 1985

METHODS
The patients were studied by means of a Technicare ON100 gamma camera. An intravenous cannula was inserted into the antecubital vein, preferably of the right arm. The detector head of the camera was positioned over the lung field. A bolus of radionuclide, volume < 1 ml, was injected, followed by a 10–20 ml saline flush. Immediately after injection we started data acquisition with a Nodecrest V77 computer. Seventy frames of 0·5 s duration were collected for subsequent processing. The mercury-195m/gold-195m generator was positioned in a shielded corner of the gamma camera room and injection therefore occurred almost immediately after elution of 195mAu. Breakthrough of 195mHg was minimised by eluting the generator several times and discarding the eluates which contained higher quantities of 195mHg. This manoeuvre was also carried out if there was an interval of ≥ 2 minutes between consecutive elutions. At the time of injection the activity of 195mAu was approximately 550 MBq. 99mTc was given on the basis of 5 MBq/kg body weight activity.

The data collected were recalled from disc and played back in cine film form. The frames of the pulmonary phase were then identified as was the frame in which the superior vena cava and right ventricle were well delineated. Two regions of inter-
Table 1 Pulmonary to systemic flow ratios in 22 patients with suspected left to right intracardiac shunts

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Au1</th>
<th>Au2</th>
<th>LAO</th>
<th>Oxygen</th>
<th>Exercise</th>
<th>99mTc</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>—</td>
<td>—</td>
<td>>3</td>
<td>ASD</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>—</td>
<td>—</td>
<td>>3</td>
<td>ASD</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2.1</td>
<td>2.2</td>
<td>3.0</td>
<td>3.2</td>
<td>—</td>
<td>2.2</td>
<td>ASD</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>ASD</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>ASD</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>VSD</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>—</td>
<td>—</td>
<td>>3</td>
<td>ASD</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>1.6</td>
<td>1.6</td>
<td>1.3</td>
<td>1.7</td>
<td>1.7</td>
<td>2.0</td>
<td>VSD</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>—</td>
<td>—</td>
<td>>3</td>
<td>VSD and ASD</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>PS? ASD</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>Fragmented bolus</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>PDA? VSD</td>
</tr>
<tr>
<td>13</td>
<td>45</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>AV coronary fistula</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>ASD</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>VSD</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>—</td>
<td>—</td>
<td>1.3</td>
<td>VSD</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>—</td>
<td>—</td>
<td>>3</td>
<td>VSD</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td>2.5</td>
<td>2.1</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>VSD</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>1.4</td>
<td>1.3</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td>1.4</td>
<td>VSD</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>VSD</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>VSD</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>VSD?</td>
</tr>
</tbody>
</table>

Mean (SD)
1.4 (0.4)
1.38 (0.36)
1.44 (0.4)
1.44 (0.62)
1.3 (0.3)
1.42 (0.36)

Au1, first gold-195m study; Au2, second gold-195m study; LAO, left anterior oblique; ASD, atrial septal defect; VSD, ventricular septal defect; AV arteriovenous; PS, pulmonary stenosis.

Fig. 1 Area under primary peak (A1) represents initial passage of radionuclide activity through lungs and area under secondary peak (A2) is attributable to premature recirculation caused by intracardiac shunting.

Statistics
All the results are expressed as mean (SD). Significant differences were assessed by the paired Student’s t test and the Wilcoxon signed rank matched pairs test.

Validation
To validate our technique 20 patients who had previously undergone cardiac catheterisation were investigated by the 99mTc technique. The interval between the catheter and radionuclide studies ranged from two weeks to four months (mean 6.1 weeks). Ratio of pulmonary flow to systemic flow was calculated by oximetry (American Optical oximeter)
Quantification of intracardiac shunts by gold-195m

![Graph showing flow ratios](image)

Fig. 2 Validation of flow ratios determined by 99mTc and oximetry in 15 patients with ratios of pulmonary flow to systemic flow of $<3:1$.

Fig. 3 Agreement between two sequential 195mAu studies without intervention. Au1, first 195mAu study; Au2, second 195mAu study. Results from 16 patients with ratios of pulmonary flow to systemic flow of $<3:1$ are shown.

Fig. 4 A comparison between ratios of pulmonary flow to systemic flow measured by 195mAu technique (mean of two studies) and 99mTc technique. Results from 16 patients with ratios of pulmonary flow to systemic flow of $<3:1$ are shown.

during the catheter study. The saturation run in each case took less than 10 minutes. Mixed venous oxygen content in patients with atrial septal defects was derived from the superior (SVC) and inferior vena caval (IVC) oxygen contents by the formula:

$$\frac{3 \times \text{SVC content} + \text{IVC content}}{4}$$

The agreement between 99mTc values and oximetry values was excellent (Fig. 2). In five patients the ratio of pulmonary flow to systemic flow was $>3:1$ by both the 99mTc technique and oximetry. These results are not included in any of the graphical comparisons since quantification is inaccurate at this level of shunting. The mean deviation from the line of identity for the remaining 15 patients was $-0.13 (0.22)$.

In addition, 99mTc studies were performed on a further 17 patients with clinically normal hearts who were receiving 99mTc for bone scans. All ratios of pulmonary to systemic flow were in the range of 1.0–1.2:1 (mean (SD) 1.09 (0.06)).

Results

In one patient a satisfactory gamma fit could not be obtained because of fragmentation of the bolus. In five of the patients the ratio of pulmonary flow to systemic flow was $>3:1$ in both anterior and left anterior oblique 99mTc studies. In the 16 remaining patients the results of two successive anterior view 195mAu studies were compared (Fig. 3). Mean (SD) deviation from the line of identity was 0.03 (0.12).

Fig. 4 compares the mean of results obtained from the two 195mAu studies with the 99mTc result. Mean deviation from the line of identity was $-0.02 (0.15)$. The mean ratio of pulmonary flow to systemic flow derived from the two 195mAu studies was 1.40 (0.19):1.

The mean ratio of pulmonary flow to systemic flow was 1.44 (0.49) in the 15 patients in whom the ratio was $<3:1$ from the left anterior oblique projection.
This was not significantly different from the value found in the anterior projection. It was impossible to identify the site of shunting from the cine display.

Twelve patients were studied after oxygen administration and ten after exercise. The mean ratio of pulmonary flow to systemic flow was 1.49 (0.62) after oxygen and 1.3 (0.3) after exercise. These were not significantly different from the resting values.

Dosimetry

To assess the radiation risk arising from the use of 195Au the effective whole body dose equivalent (the dose to the uniformly irradiated whole body that carries the same risk as the observed non-uniform dose) was calculated using the weighting factors recommended by the International Commission on Radiological Protection. In our generator system, which resembles that described by Elliott *et al.*, we measured a mean (SD) 195Hg breakthrough of 96 (24) kBq 195Hg per injection ($n = 6$), with a maximum of 120 kBq. Data for the dosimetry of 195Au and 195Hg in animals have been published. The data we used were taken from Ackers and de Jong. Table 2 compares the dose from a single injection of 195Au with that from a typical injection of 99mTc labelled sodium pertechnetate.

Table 3 compares the effective whole body dose equivalent from five injections of 195Au with that from a single injection of 370 MBq 99mTc in adults and children. As a worst case estimate we assume that the volume of the eluate from the 195Au generator is not reduced for children, and that the maximum breakthrough dose of 120 kBq 195Hg is injected. The comparisons are made with 99mTc activities reduced according to body weight. Body weight factors were taken from Administration of Radioactive Substances Advisory Committee guidelines (appendix 1B).

Discussion

For some years, radionuclide angiographic techniques have proved useful in the assessment of patients with left to right intracardiac shunts. The technique has been validated against oximetry and has proved valuable in the investigation of congenital heart disease in children. The radionuclide most widely used for shunt evaluation is 99mTc, which has a relatively long half life of six hours. 195Au, has a half life of 30-5 seconds and is available in generator systems from a 195Hg parent (half life 41-6 hours). The physical characteristics of 195Au ensure that the patient is subjected to mini-mal radiation dose. With all mercury-195/gold-195m generators, however, the eluate is contaminated by 195Hg breakthrough. In our generator system the mean 195Hg breakthrough dose was 96 kBq per injection, with a maximum of 120 kBq. Mena *et al.*, using a different type of generator, quote a figure of 0.75 kBq 195Hg/195Au, implying a dose of 550 kBq of 195Au per injection of 740 MBq of 195Au.

Because mercury accumulates in the kidneys radi-
Quantification of intracardiac shunts by gold-195m

...ation doses from the breakthrough of 195mHg are important. But even in the case of a 1 year old child, the effective whole body dose equivalent from five 195mAu studies is less than that from a single 99mTc study (Table 3). The dose to the kidneys of a 1 year old child when 195mAu is used would be 12 mSv (1200 mrem), which, although it is high, is the same as the dose to the upper large intestine when 370 MBq 99mTc is given. In the newborn infant, kidney doses could be as high as 34 mSv (3400 mrem) if five studies are performed. In this study, however, multiple injections were given only to older children and adults and no child under the age of 6 years was studied. In routine clinical practice it is unlikely that more than two studies would be performed, and this would reduce the worse case estimates quoted here. We conclude that the radiation doses from eluates obtained from the type of 195mAu generator used in this study are acceptable in all except the very young infant. Further, compared with existing techniques a significant reduction in radiation dose can be achieved in most patients, even when several 195mAu studies are performed.

The 195mAu is eluted immediately before use and an eluate may be collected sufficiently rapidly for repeat studies to be performed after an interval as short as 2 minutes.15

We compared the results of the 195mAu studies with those obtained by a 99mTc technique that was validated against oximetry. We also assessed the effects of intervention on the results obtained. There was excellent agreement between the results obtained by the 195mAu and 99mTc techniques (Fig. 4), and all five patients in whom the ratio (Qp:Qs) was calculated to be > 3:1 with 99mTc had similar flow ratios calculated with 195mAu. The two successive 195mAu studies without intervention also accorded well, demonstrating the reproducibility of the technique. These results confirm those of Treves et al who were able to quantify shunts with iridium-191m,16 another radionuclide with a short half life. They did not, however, perform sequential studies, and the very short half life of the 191mIr (4.96 s) and its relatively low energy, mean that it is less suitable for imaging than 195mAu.

The administration of oxygen might be expected to increase the ratio of pulmonary flow to systemic flow after oxygen administration in our study, suggesting either that a longer period of administration was needed to change the flow ratio in this group, or that ratios did not change sufficiently to reflect alterations in pulmonary vascular reactivity. The latter assumption is supported by the lack of change on straight leg raising, an intervention which would be expected to cause a fall in ratio as a result of systemic vasodilatation.

The values obtained in the left anterior oblique view were no different from those obtained in the anterior view. We had hoped to identify the site of shunting in this projection but were unable to do so. The left anterior oblique projection is, therefore, of little use because it is more awkward to achieve than the anterior view and does not provide additional information.

In this study we applied a recirculation correction if we could identify a good recirculation curve.18 In most cases this correction was not essential, but occasionally it made fitting of the secondary curve easier. We found that use of intravenous cannula allowed excellent flushing of the bolus by saline without leakage and in only one case was it impossible to calculate the ratio of pulmonary flow to systemic flow. In this instance the bolus had become fragmented and even deconvolution of the curve would have proved fruitless.19

In summary, quantification of intracardiac shunts by means of the radionuclide 195mAu is reproducible and accurate. The results are not affected by oxygen, exercise, or the choice of projection and the low radiation dose makes the radionuclide suitable for use in children with suspected left to right shunts. The combination of this technique with cross sectional echocardiography may obviate the need for cardiac catheterisation in children with simple congenital defects.

We thank Mr Laurence Freedman for his help with the statistical analysis and Mrs Christine Taylor for her help in the programme of the studies. We also thank the Atomic Energy Research Establishment, Harwell for the supply of the generators.

References

3. Hurwitz RA, Treves S, Keane JF, Girod DA, Caldwell...

Quantification of intracardiac shunts by gold-195m, a new radionuclide with a short half life.
D L Stone, R W Barber, O J Ormerod, M C Petch and E P Wraight

Br Heart J 1985 54: 495-500
doi: 10.1136/hrt.54.5.495

Updated information and services can be found at:
http://heart.bmj.com/content/54/5/495

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/