In vivo production of prostacyclin and thromboxane in patients with acute myocardial infarction

P HENRIKSSON, Á WENNMALM, O EDHAG, O VESTERQVIST,* K GREEN*

From the Department of Medicine, Huddinge Hospital, and *Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden

SUMMARY The in vivo production of prostacyclin and thromboxane was monitored by measuring their major urinary metabolites 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁₅ in ten patients with acute myocardial infarction, five on standard treatment and five receiving prostacyclin infusion. During acute myocardial infarction excretion of 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁₅, measured by a gas chromatography-mass spectrometry method with deuterated internal standards, was significantly increased. This indicates that thromboxane and prostacyclin synthesis are increased during the development of acute myocardial infarction. The excretion data for 2,3-dinor-thromboxane B₂ showed that after administration of aspirin there was less pronounced and more variable inhibition than expected. Prostacyclin infusion did not markedly affect the excretion of the thromboxane metabolite.

There has been considerable interest in the possible role of platelets in the pathogenesis of acute myocardial infarction.¹ The discovery of thromboxane A₂ and its vasoconstricting and platelet aggregating effects has focused attention on the possible involvement of this platelet-derived compound in cardiovascular disease.² Similarly the discovery of prostacyclin and its vasodilatory and platelet anti-aggregatory effects triggered off intense research on the possible role of this compound in protective mechanisms against cardiovascular disease.³

Studies on the possible involvement of those compounds in human cardiovascular disease have long been hampered by the lack of suitable methods for monitoring their in vivo production of thromboxane A₂ and prostacyclin. Thromboxane A₂ and prostacyclin are chemically degraded in vivo to thromboxane B₂ and 6-keto-prostaglandin F₁₅ respectively. It is highly questionable, however, whether measurement of thromboxane B₂ in blood reflects thromboxane A₂ synthesis in vivo.⁴ Increasing evidence also suggests that concentrations of 6-keto-prostaglandin F₁₅ found in samples of peripheral blood do not reflect the formation of prostacyclin in vivo.⁵–⁸

Requests for reprints to Dr P Henriksson, Department of Medicine, Huddinge Hospital, S–141 86 Huddinge, Sweden.

The in vivo metabolism of thromboxane B₂ and prostacyclin has been studied in man and the main urinary metabolites have been identified as 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁₅ respectively.⁹¹⁰ Methods for analysis of these compounds have been developed based on deuterated internal standards/carriers and gas chromatography-mass spectrometry.¹¹–¹⁴ Excretion of those metabolites quickly (0-5–1.5 hours) and adequately reflects changes in the production of thromboxane A₂ and prostacyclin in vivo.⁷¹⁴–¹⁶ The intra-individual variation in the excretion of these metabolites is small and independent of urine production.¹⁶ The excretion of the prostacyclin metabolite is, however, considerably increased by physical exercise.¹⁴

We report on the formation of thromboxane A₂ and prostacyclin in vivo during and after the development of myocardial infarction.¹⁷

Patients and methods

All patients were admitted to the coronary care unit less than seven hours after the onset of chest pain. A diagnosis of myocardial infarction was confirmed by creatine kinase MB estimations every four hours. Five patients were given placebo infusion and five had prostacyclin infusion (4–5 ng/kg/min) for 96 hours as well as conventional treatment.¹⁸ Urine was...
collected continuously before and every eight hours during the infusion period and was analysed for 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁α. This design was selected in order to study not only the magnitude but also the dynamics of the synthesis of thromboxane and prosta-cyclin. A 12 hour urine collection was obtained from most individuals seven to nine months after the acute myocardial infarction.

The methods that we used to measure 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁α in urine have been described in detail elsewhere.¹³¹⁴

Results

The Table shows the results from the initial chest x-ray investigation as well as the medication given to each individual as a result of the clinical decision reached during the first three days after admission. All patients were given 0.5 g of aspirin and 225 mg dipyridamole 72 hours after the start of the infusion as a part of the study protocol. Figure 1 shows the urinary excretion of 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁α from the five patients (cases A–E) on placebo infusion and Fig. 2 their excretion from patients (F–J) on protacycin. The excretion rate of 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin F₁α in normal healthy individuals is 130–535 pg/mg creatinine and 38–508 pg/mg creatinine respectively.¹³¹⁴ Descrip-

Table Medication in study group

<table>
<thead>
<tr>
<th>Case No</th>
<th>Initial chest x ray findings</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Congestive heart failure</td>
<td>Morphine 28 mg iv, metoprolol 2 mg iv, frusemide 120 mg iv, aspirin 1.5 g oral</td>
<td>Frusemide 80 mg oral</td>
<td>Frusemide 80 mg oral</td>
</tr>
<tr>
<td>B</td>
<td>Normal</td>
<td>Morphine 17.5 mg iv, frusemide 120 mg iv</td>
<td>Morphine 5 mg iv</td>
<td>Metoprolol 150 mg oral</td>
</tr>
<tr>
<td>C</td>
<td>Normal</td>
<td>Pethidine 25 mg iv, frusemide 20 mg iv</td>
<td>Metoprolol 150 mg oral</td>
<td>Metoprolol 150 mg oral</td>
</tr>
<tr>
<td>D</td>
<td>Normal</td>
<td>Morphone 10 mg iv, frusemide 20 mg iv</td>
<td>Metoprolol 100 mg oral</td>
<td>Metoprolol 200 mg oral</td>
</tr>
<tr>
<td>E</td>
<td>Enlarged</td>
<td>Morphone 20 mg iv, frusemide 20 mg iv, metoprolol 200 mg oral</td>
<td>Metoprolol 200 mg oral</td>
<td>Metoprolol 200 mg oral</td>
</tr>
<tr>
<td>G</td>
<td>Congestive heart failure</td>
<td>Morphone 18 mg iv, frusemide 80 mg iv</td>
<td>Morphone 20 mg iv, aspirin 8 g oral, hydrocortisone 100 mg iv, metoprolol 150 mg oral</td>
<td>Aspirin 8 g oral, metoprolol 150 mg oral</td>
</tr>
<tr>
<td>H</td>
<td>Congestive heart failure</td>
<td>Morphone 38 mg iv, frusemide 80 mg iv</td>
<td>Frusemide 40 mg oral, atenolol 100 mg oral, aspirin 1.5 g oral</td>
<td>Frusemide 40 mg oral, atenolol 100 mg oral, aspirin 1.5 g oral</td>
</tr>
<tr>
<td>I</td>
<td>Congestive heart failure</td>
<td>Pethidine 25 mg iv, frusemide 10 mg iv</td>
<td>Aspirin 0.5 g + 1.0 g oral</td>
<td>Aspirin 2.0 mg oral</td>
</tr>
<tr>
<td>J</td>
<td>Congestive heart failure</td>
<td>Morphone 5 mg iv, frusemide 20 mg iv</td>
<td>0</td>
<td>Frusemide 80 mg oral</td>
</tr>
</tbody>
</table>

Henriksson, Wennmalm, Edhag, Vesterqvist, Green

The initial excretion of 2,3-dinor-thromboxane B₂ was clearly higher than that seen in normal males. The patient received 500 mg of aspirin because of pain 9, 15, and 22 hours after the start of infusion. This reduced the excretion of 2,3-dinor-thromboxane B₂ by about half to 378 pg/mg creatinine. Another dose of 500 mg aspirin at 69 h caused a further reduction from 205 to 124 pg/mg creatinine. Urinary excretion of 2,3-dinor-6-keto-prostaglandin F₁α was initially within the limits for normal healthy males, but there was a continuous increase in concentrations up to 3110 pg/mg creatinine from seven to 15 hours after the maximum creatine kinase MB concentration.

Patient A—Before and during the first 2-5 days of infusion urinary excretion of 2,3-dinor-thromboxane B₂ was two to four times higher than the highest excretion seen in normal healthy females. Sixty one hours after the start of the infusion she was given 500 mg of aspirin, and 4–12 hours afterwards excretion of 2,3-dinor-thromboxane B₂ increased to 5646 pg/mg creatinine. This patient initially had normal urinary excretion of 2,3-dinor-6-keto-prostaglandin F₁α that later increased to a peak of 3605 pg/mg creatinine. Nine months later excretion of 2,3-dinor-thromboxane B₂ and 2,3-dinor-6-keto-
In vivo production of prostacyclin and thromboxane in patients with acute myocardial infarction

Fig. 1 Urinary excretion of 2,3-dinor-thromboxane B₃ and 2,3-dinor-6-keto-prostaglandin F₁α in patients on a placebo infusion. 0 h, indicates start of infusion. Each data point along the time axis is plotted for the middle of each period of urine collection. Arrow with asterisk indicates the time at which creatine kinase MB was highest. In adults normal excretion of 2,3-dinor-thromboxane B₃ is 130–535 pg/mg creatinine and of 2,3-dinor-6-keto-prostaglandin F₁α it is 38–508 pg/mg creatinine (n = 20 both groups).

Fig. 2 Urinary excretion of 2,3-dinor-thromboxane B₃ and 2,3-dinor-6-keto-prostaglandin F₁α in patients on a prostacyclin infusion. 0 h, see legend to Fig. 1 for explanation.
prostaglandin F₁₅ was 636 and 86 pg/mg creatinine respectively.

Patient C—Excretion of 2,3-dinor-thromboxane B₂ in all urine samples but the last one was higher than that seen in normal healthy males. The peak value, 54–62 hours after the start of infusion, coincided with three episodes of angina pectoris. Seven months later excretion of 2,3-dinor-thromboxane B₂ was 143 pg/mg creatinine. In this patient excretion of 2,3-dinor-6-keto-prostaglandin F₁₅ reached a peak (1405 pg/mg creatinine) shortly after the maximal creatine kinase MB value. Seven months later the excretion was 358 pg/mg creatinine.

Patient D—The urinary excretion of 2,3-dinor-thromboxane B₂ in this patient was initially 302 pg/mg creatinine and increased to twice this value around 10 h after the maximum creatine kinase MB value. Excretion seven months later was 192 pg/mg creatinine. Urinary excretion of 2,3-dinor-6-keto-prostaglandin F₁₅ was initially within normal limits for healthy males. It then increased to a maximum of 755 pg/mg creatinine. Seven months later excretion was 119 pg/mg creatinine.

Patient E—Urinary excretion of 2,3-dinor-thromboxane B₂ was within the normal range until about 50 hours after creatine kinase MB concentration reached a maximum, then it increased to a peak of 650 pg/mg creatinine. A dose of aspirin (500 mg) reduced the urinary excretion rate of 2,3-dinor-thromboxane B₂ by about 70%. Eight months later urinary excretion was 318 pg/mg creatinine. The initial urinary excretion rate of 2,3-dinor-6-keto-prostaglandin F₁₅ was within the normal range but it then increased abruptly to a maximum of 6348 pg/mg creatinine. This abrupt increase was not associated with any obvious clinical symptom. Eight months later urinary excretion was 240 pg/mg creatinine.

Prostacyclin (Epoprostenol) Infusion

After the start of prostacyclin infusion the excretion of 2,3-dinor-6-keto-prostaglandin F₁₅ increased to around 30 000 pg/mg creatinine.

Patient F—In the first urine samples the urinary excretion of 2,3-dinor-thromboxane B₂ was 459 and 472 pg/mg creatinine and thereafter the excretion fell to around 200 pg/mg creatinine. Urinary excretion of 2,3-dinor-6-keto-prostaglandin F₁₅ was increased in the first urine sample, probably because the infusion was started 0·5 hour before the collection of the first urine sample was completed. As expected excretion increased even more during the infusion.

Patient G—Urinary excretion of 2,3-dinor-thromboxane B₂ was initially somewhat raised (peak value 630 pg/mg creatinine). The development of a severe pericarditis (at about 20 hours) required treatment with 8 g of aspirin daily combined with injection of 100 mg hydrocortisone. Despite this large dose of aspirin urinary excretion of 2,3-dinor-thromboxane B₂ only decreased slowly to about 30% of the maximum level. Seven months later the excretion of 2,3-dinor-thromboxane B₂ was 249 pg/mg creatinine.

Patient H—During the first day of prostacyclin infusion the urinary excretion rate of 2,3-dinor-thromboxane B₂ was clearly higher than the excretion rate in normal healthy males. Twenty eight hours after the start of the infusion the patient was started on 1·5 g aspirin daily for pericarditis. An abrupt reduction in excretion (by about 80%) followed. Eight months later excretion of the thromboxane metabolite was 320 pg/mg creatinine.

Patient I—Urinary excretion of 2,3-dinor-thromboxane B₂ in the initial sample was clearly higher (755 pg/mg creatinine) than that in normal healthy males. The patient received 500 mg aspirin at about 25 hours, and this reduced urinary excretion of 2,3-dinor-thromboxane B₂ by 50–60%. Later the patient was given more aspirin (3 g in total) without any further reduction of the excretion of 2,3-dinor-thromboxane B₂. The excretion of 2,3-dinor-thromboxane B₂ seven months later was 115 pg/mg creatinine.

Patient J—The urinary excretion of 2,3-dinor-thromboxane B₂ was slightly higher than

Fig. 3 Urinary excretion of 2,3-dinor-thromboxane B₂ in the first sample collected after acute myocardial infarction (AMI) and in a sample collected 6–9 months later in eight individuals. Individual values are means (SD).
In vivo production of prostacyclin and thromboxane in patients with acute myocardial infarction

normal for most of the study. Eight months later the excretion of 2,3-dinor-thromboxane B₂ was 173 pg/mg creatinine.

Statistical Evaluation

We compared the initial and follow up values on the excretion of 2,3-dinor-thromboxane B₂ in the eight cases in which we were able to collect follow up samples (Fig. 3). The mean initial excretion was 771 (410) pg/mg creatinine (mean (SD)) and the follow up excretion was 268 (167) pg/mg creatinine (mean (SD)). Student's t test for paired samples showed a highly significant difference (p<0.01) between the initial and follow up excretion.

Discussion

We found a prolonged increase in the in vivo synthesis of thromboxane and prostacyclin during the acute phase of myocardial infarction. This suggests that these substances may be involved in the pathophysiology of acute myocardial infarction.

In all patients except case F excretion of 2,3-dinor-thromboxane B₂ was higher than normal during at least part of the study period. Since there is little variation (SD 10–23%) in the excretion of 2,3-dinor-thromboxane B₂ in a normal individual over weeks and months, we believe that the finding that maximum increases seen during the study were 2–11 times higher than those found 7–9 months later is more important than the general rise in excretion. There was also a highly significant difference between the excretion in the very first urine sample, which was collected before any treatment was started, and in that obtained 7–9 months later. Moreover the excretion in one and the same individual during the first 80 hours was very variable; the ratio between the highest and lowest values ranged from about 1:5:1 to 3:5:1 (values for case A and after aspirin are not included). Thus both the level of and the variability of the excretion of 2,3-dinor-thromboxane B₂ strongly suggest the involvement of thromboxane in the pathogenesis of acute myocardial infarction.

Excretion of 2,3-dinor-6-keto-prostaglandin F₁α in four of the cases without prostacyclin infusion was initially within the normal range. Thereafter the excretion increased, reaching a peak 2–20 hours after the maximum creatine kinase MB value. Excretion of 2,3-dinor-6-keto-prostaglandin F₁α varies in healthy individuals (intra-individual variation 16–31% SD) and increases considerably during physical exercise. Despite the fact that our patients remained in bed, the maximum concentrations seen in cases A, B, C, and E were far above (or in case D, close to), concentrations found in normal individuals during strenuous exercise. In all cases (A–J) excretion of 2,3-dinor-6-keto-prostaglandin F₁α seven to nine months later was within the range seen in normal individuals. Thus prostacyclin synthesis in vivo is increased during an acute myocardial infarction. Synthesis is greatest soon after maximal disintegration of myocardial tissue, as indicated by the appearance of creatine kinase MB in the circulation.

Excretion of 2,3-dinor-6-keto-prostaglandin F₁α before infusion of prostacyclin was within normal limits and increased to about 30 000 pg/mg creatinine during infusion. The infusion had no obvious immediate effect on the excretion of the thromboxane metabolite. These data seem to contradict the idea that exogenous prostacyclin will reduce in vivo thromboxane synthesis.

Three individuals in each group were given aspirin during the study. Only three of them, E, H, and I, showed an abrupt reduction in 2,3-dinor-thromboxane B₂ excretion (by 65%, 82%, and 65% respectively). These values are similar to or only slightly higher than those seen in normal individuals after 500 mg of aspirin. The effect of aspirin on the excretion of 2,3-dinor-thromboxane B₂ in cases A, B, and G, however, is distinctly different from that seen in normal individuals. In case A a dose of 3 × 500 mg aspirin caused a 55% decrease in urinary 2,3-dinor-thromboxane B₂ from 880 to about 378 pg/mg creatinine. A further 500 mg aspirin given at 69 h caused another reduction from 205 to 124 pg/mg creatinine. Patient B was given 500 mg aspirin at 61 hours when symptoms of what later turned out to be a post-myocardial infarction syndrome first appeared. The urine sample collected after this showed an enormous increase in the excretion of 2,3-dinor-thromboxane B₂. Patient G developed symptoms of pericarditis around 20 hours after the start of infusion and daily doses of 8 g aspirin were given. Despite this large dose excretion of 2,3-dinor-thromboxane B₂ declined only gradually to around 150 pg/mg creatinine. Aspirin has less effect on thromboxane synthesis during acute myocardial infarction (that is when thromboxane synthesis seems to be raised and labile) than it does in healthy individuals.

Our data strongly indicate that synthesis of thromboxane is increased and variable for several days after acute myocardial infarction. This probably reflects a generalised increase in platelet aggregability but we cannot rule out the possibility of an increase in thromboxane synthesis when the coronary vessel becomes occluded. We can only speculate on the reasons for a very high synthesis of prostacyclin, which peaked after maximum creatine kinase MB release, but this finding could indicate...
that most of the increase in endogenous prostacyclin synthesis is the result of tissue necrosis or even repair. The excretion data collected after administration of prostacyclin and aspirin raise several new questions about the prevention of acute myocardial infarction and reduction of infarct size.19 The actions of aspirin and or other thromboxane synthetase inhibitors on the synthesis of thromboxane A2 under pathological conditions clearly cannot be forecast from results obtained under normal conditions. Studies are continuing.

This study was supported by grants from the Swedish National Association against Heart and Chest Diseases, the Swedish Medical Research Council, and The Upjohn Company.

References

5 Blair IA, Barrow SE, Waddell KA, Lewis PJ, Dollery CT. Prostacyclin is not a circulating hormone in man. Prostaglandins 1982; 23: 579–89.
15 Vesterqvist O, Green K. Urinary excretion of 2,3-dinor-thromboxane B2 in man under normal conditions, following drugs and during some pathological conditions. Prostaglandins 1984; 27: 627–44.
In vivo production of prostacyclin and thromboxane in patients with acute myocardial infarction.

P Henriksson, A Wennmalm, O Edhag, O Vesterqvist and K Green

Br Heart J 1986 55: 543-548
doi: 10.1136/hrt.55.6.543

Updated information and services can be found at:
http://heart.bmj.com/content/55/6/543

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/