Congenital left atrial wall aneurysm in a patient with neurofibromatosis

NEAL UREN, MARTIN BEEN, FERNANDO GUZMAN

From the Regional Cardiothoracic Unit, Freeman Hospital, Newcastle upon Tyne

SUMMARY A congenital intrapericardial aneurysmal dilatation of the left atrial wall was found in a 28 year old man who presented with atrial fibrillation after a syncopal event. The patient had cutaneous manifestations of neurofibromatosis. The diagnosis was made by cross sectional echocardiography and confirmed by angiocardiography. Surgical excision of the aneurysm resolved the symptoms.

Congenital intrapericardial aneurysm of the left atrium is a rare anomaly. There are 32 reports of aneurysms affecting the atrial appendage alone and 13 reports of aneurysms of the atrial wall. We report a case in which there was an intrapericardial aneurysm of the left atrial wall and we review the mode of presentation, investigation, potential complications, and possible association with neurofibromatosis.

Case report

A 28 year old man presented to a local hospital after a syncopal episode associated with tight central chest pain and severe dyspnoea while playing football. On

Fig 1 (a) Chest radiograph showing an abnormally prominent left heart ten years before presentation. (b) Chest radiograph showing cardiomegaly at presentation.
arrival he was conscious but hypotensive, and electrocardiographic monitoring showed atrial flutter with variable block. When the arrhythmia was found to be resistant to cardioversion and intravenous amiodarone he was transferred to the regional cardiothoracic centre.

He reported increasing exertional dyspnœa over the past two months. There was no recent history of viral illness or a family history of cardiovascular disease.

He was clinically in atrial fibrillation with a ventricular rate of 160 per minute but there was adequate perfusion with a blood pressure of 100/60 mm Hg. A pulsation was seen in the pulmonary area and the apex was not displaced. The jugular venous pulse was not elevated. Heart sounds were normal with a soft ejection systolic murmur at the left sternal edge. Lung fields were clear. He had seven café au lait spots and bilateral axillary freckling.

The 12 lead electrocardiogram confirmed atrial fibrillation and showed right axis deviation, partial right bundle branch block, poor R wave progression, and deep S waves in V2 and V3. A chest radiograph obtained 10 years before showed an abnormality of the mid left heart border (fig 1a). The chest radiograph at presentation showed considerable cardiomegaly with a cardiothoracic ratio of 19:30 (fig 1b). Cross sectional echocardiography showed normal left ventricular size and function. Adjacent to and impinging on the left ventricle was a large echo-free chamber. Doppler examination confirmed flow within the chamber and colour Doppler suggested that it communicated with the left atrium close to the mitral valve. Cardioversion with energies up to 400 J was attempted but failed. Treatment with digoxin improved the control of ventricular rate and symptoms.

Right heart catheterisation showed normal pressures and no intracardiac shunt but the left atrium and the additional chamber were entered through a patient foramen ovale. Injection of contrast confirmed communication between the chamber and the left atrium (fig 2a), and the left ventricular angiogram suggested compression of the left ventricle during diastole, presumably by the large aneurysm (fig 2b).

A dilated aneurysm of the left atrial wall with a maximum diameter of 8 cm was found at operation through a left thoracotomy. Electrophysiological studies showed electrical activity in all areas of the aneurysm. The left atrial appendage was normal. The aneurysm was resected without cardiopulmonary bypass. Post-cardiotomy syndrome developed and lasted three days and subsequent cardioversion restored sinus rhythm.

Histological examination showed fibrosis in the aneurysm wall mainly of the subendocardium but with residual irregular myocardial fibres, many of which were hypertrophied. Neural fibres were present and normal, in keeping with the finding of electrical activity within the aneurysm.

Discussion

Congenital aneurysms of the left atrium are rare and fall into four distinct pathological groups: intrapericardial aneurysm of the left atrial wall; intrapericardial aneurysm of the left atrial appendage; herniation of the left atrial appendage through a congenital pericardial defect (not strictly an aneurysm); and multiple saccular aneurysms of the left (and right) atrial wall. More rarely, congenital aneurysms of the right atrium have been described; in one case there was also an aneurysm of the left atrial wall.
Table  A comparison of reported findings in aneurysms of the left atrial wall and appendage

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Left atrial aneurysm</th>
<th>Appendage aneurysm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (%)</td>
<td>No (%)</td>
</tr>
<tr>
<td>Case reports</td>
<td>14 (100)</td>
<td>32 (100)</td>
</tr>
<tr>
<td>Clinical features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitation/SVT</td>
<td>10 (71)</td>
<td>16 (50)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>2 (14)</td>
<td>4 (13)</td>
</tr>
<tr>
<td>Systolic murmur</td>
<td>8 (57)</td>
<td>10 (31)</td>
</tr>
<tr>
<td>Systemic embolism</td>
<td>0 (0)</td>
<td>8 (25)</td>
</tr>
<tr>
<td>Electrocardiogram:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation/SVT</td>
<td>4 (29)</td>
<td>9 (28)</td>
</tr>
<tr>
<td>Chest radiograph:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid left heart bulge</td>
<td>3 (21)</td>
<td>22 (69)</td>
</tr>
<tr>
<td>Cardiomegaly</td>
<td>11 (79)</td>
<td>10 (31)</td>
</tr>
<tr>
<td>Operative findings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mural thrombus</td>
<td>1 (7)</td>
<td>4 (13)</td>
</tr>
</tbody>
</table>

SVT, sustained ventricular tachycardia.

The major risk of an aneurysm of the left atrial appendage is systemic (usually cerebral) embolism (table). None of the 13 patients with aneurysms of the atrial wall had systemic emboli, although at operation one had a thrombus in the aneurysm. It seems advisable to recommend anticoagulants in both groups at diagnosis in view of the risk of cerebral embolism.

It is not surprising that atrial arrhythmias are common in view of the fibrosis, hypertrophy, and dilatation of the atrial wall. As with previous reports, restoration of sinus rhythm was difficult and was only possible after the aneurysm had been resected. Operation is the recommended treatment because it abolishes symptoms and removes the source of emboli. Operation is recommended for extrapericardial herniations because of the risk of strangulation. To date there has been no reported mortality related to operation.

The assertion that intrapericardial aneurysms are congenital is based on pathological examination and the association with other cardiac anomalies. The aneurysmal dilatation is thought to be the result of congenital weakness in the wall. Hypertrophy of the atrial myocardium with a thickened endocardium or the development of fibroelastosis has been reported.

To our knowledge, this is the first reported case of left atrial aneurysm and neurofibromatosis. The presence of seven café au lait spots and bilateral axillary freckling is pathognomic of neurofibromatosis. There was no family history of the disease; however, new mutations account for 50% of all index cases. Close clinical examination did not find any other manifestations of the disease. In one series 7.7% of children with neurofibromatosis had congenital heart disease. A strong association between neurofibromatosis and pulmonary valve stenosis has been described. Large series have suggested that the association between neurofibromatosis and congenital heart disease is coincidental. Because neurofibromatosis is often not diagnosed until the third decade, however, a true association might have been overlooked.

We thank Dr Douglas Reid and Mr Colin J Hilton for their help and for permission to report this case.

References
Congenital left atrial wall aneurysm in a patient with neurofibromatosis.

N Uren, M Been and F Guzman

*Br Heart J* 1988 59: 391-394
doi: 10.1136/hrt.59.3.391