Thrombin and plasmin activity in coronary artery disease

M SMALL, G D O LOWE, J T DOUGLAS, I HUTTON,* A R LORIMER,* C D FORBES
From the University Departments of Medicine and Cardiology,* Royal Infirmary, Glasgow

SUMMARY Basal plasmin and thrombin activity in plasma were assessed by radioimmunoassay of the fibrinogen derivatives containing the sequence Bβ₁₅₋₄₂ and of fibrinopeptide A respectively in a cross sectional controlled study of men with coronary artery disease. Compared with healthy controls (n = 33) men with angiographically defined coronary artery disease (n = 98) had a modest but significant increase in concentrations of fibrinopeptide A, indicating an activated coagulation system. Concentrations of Bβ₁₅₋₄₂ were similar in those with coronary artery disease and in the controls.

The enhanced thrombin activity in coronary artery disease is in keeping with current evidence suggesting an association between coronary artery disease and a hypercoagulable state.

Recent interest in the role of haemostasis in vascular disease was prompted by studies showing an association between haemostatic variables and ischaemic heart disease and by prospective studies which show that increased fibrinogen, in particular, is associated with ischaemic heart disease. Sensitive radioimmunoassays have become available for measurement of the fibrinogen derivatives, fibrinopeptide A (an indicator of thrombin degradation of fibrinogen in vivo) and Bβ₁₅₋₄₂-containing peptides (an indicator of plasmin mediated fibrinogenolysis). Simultaneous measurement of these peptides permits the balance between fibrinolysis and coagulation to be estimated. Since it has been postulated that the patency of the vascular system depends on the dynamic equilibrium between fibrinolysis and coagulation, these peptides could provide a measure of the risk of thrombosis. Compared with control subjects, fibrinopeptide A concentrations have been reported to be raised or normal in subjects with ischaemic heart disease. The concentrations of Bβ₁₅₋₄₂ peptides in patients with coronary artery disease have not been studied and therefore we have measured these fibrinogen derivatives in a controlled study to establish whether coronary artery disease is associated with an imbalance between fibrinolysis and coagulation.

Patients and methods

Informed consent was obtained from 98 white men who had been admitted for elective coronary angiography for investigation of ischaemic cardiac pain. Because acute arterial vascular events have been shown to alter some tests of haemostasis we excluded patients who had sustained a myocardial infarction within 3 months of coronary investigation. We studied a control group of 33 white, healthy factory employees. These men lived in the same area as the patients with coronary disease. The control subjects were not receiving any drug treatment, were not hypertensive (blood pressure < 160/95 mm Hg), and gave no family history of ischaemic heart disease or diabetes mellitus. Random urinalysis and the measurement of concentrations of plasma glucose in fasting subjects excluded undiagnosed asymptomatic diabetes mellitus. The body mass index (weight (kg)/height (m²)) was calculated as a measure of overweight or underweight.

METHODS

A single resting blood sample was taken with minimal venostasis from fasted subjects between 7 and 9 am. Citrated blood was taken for radioimmunoassay of plasma Bβ₁₅₋₄₂ peptides and fibrinopeptide A (IMCO, Stockholm) as previously described. Coronary angiography was performed by the Judkins' technique and blood samples were taken before this procedure. Coronary artery disease was
scored as the number of major vessels with a reduction of the luminal diameter of ≥50%.

Statistical Analysis

The distribution of fibrinopeptide A and \(\text{Bf}_{15-42} \) peptides was skewed. Log transformation provided the best approximation to a normal distribution. The principal aim of the study was to assess whether the peptide concentrations were different in coronary heart disease and this was analysed by the unpaired Student's t test on log transformed data. A one factor analysis of variance (ANOVA) was used to assess the effect of the severity of coronary artery disease on the peptide concentrations.

Results

The two groups were well matched for age, body mass index, and smoking (table). The table lists the log transformed values for \(\text{Bf}_{15-42} \) and fibrinopeptide A. Concentrations of \(\text{Bf}_{15-42} \) were similar in the controls and in the patients with coronary artery disease. Fibrinopeptide A concentration were higher in patients with coronary artery disease (\(p < 0.05 \)) than in controls. When the log data on the four groups (controls and patients with one, two, or three vessel disease) were evaluated by one factor ANOVA, the differences were not statistically significant (F value 2.249, \(p = 0.08 \)), although in patients with two and three vessel disease mean fibrinopeptide A concentrations were 48% and 39% higher than in the controls (figure). Peptide concentrations in patients with a previous myocardial infarction (\(n = 55 \)) were similar to those in patients with coronary artery disease but no previous thrombotic event (\(n = 43 \)), and antianginal treatment (\(\beta \) adrenoceptor blockade, calcium channel antagonists, nitrates) did not influence either \(\text{Bf}_{15-42} \) or fibrinopeptide A concentrations.

Discussion

We found a modest but significant increase in fibrinopeptide A in patients with coronary artery disease, indicating an increase in thrombin degradation of fibrinogen in such patients. This result accords with a previous study. Although there were no statistically significant differences in fibrinopeptide A concentrations between patients with coronary artery disease of varying severity, the higher concentrations in patients with double and triple vessel disease may be biologically important.

Earlier studies did not examine \(\text{Bf}_{15-42} \) concentrations in coronary artery disease and we did not find any differences in unstimulated, resting \(\text{Bf}_{15-42} \) concentrations between patients and healthy controls. This finding could be interpreted in two different ways. The obvious suggestion is that plasmin-mediated fibrin(ogen)olysis is not altered by the presence of coronary artery disease. Alternatively, an activated coagulation system (as shown by raised fibrinopeptide A concentrations) could lead to a secondary activation of fibrinolysis, and the absence of an increase in \(\text{Bf}_{15-42} \) concentrations may reflect an abnormal response of the fibrinolytic enzyme system. Dynamic tests of plasma fibrinolytic potential showed that abnormalities of fibrinolysis are more common in men with ischaemic heart disease and more recent studies have shown that this finding may be related to high concentrations of the fast-acting inhibitor to tissue plasminogen activator. It may

Table

<table>
<thead>
<tr>
<th>Clinical and haemostatic variables (mean (SD)) in men with coronary artery disease (CAD) and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Body mass index</td>
</tr>
<tr>
<td>Smokers</td>
</tr>
<tr>
<td>(%)</td>
</tr>
<tr>
<td>Fibrinopeptide A</td>
</tr>
<tr>
<td>(pmol/ml)</td>
</tr>
<tr>
<td>(\text{Bf}_{15-42})</td>
</tr>
<tr>
<td>(pmol/ml)</td>
</tr>
</tbody>
</table>

Fibrinopeptide A and \(\text{Bf}_{15-42} \) are given as mean and 95% confidence intervals.

*\(p < 0.05 \) compared with controls.
Thrombin and plasmin activity in coronary artery disease

be that dynamic stimuli such as exercise or venous occlusion might unmask defective plasmin activity (as measured by changes in Bβ15-42 concentrations) in coronary artery disease but this suggestion requires further study. None the less, the results of our study accord with growing evidence that ischaemic heart disease is associated with haemostatic disturbance.1-3

We thank Dr G Gettinby for statistical advice.

References

Thrombin and plasmin activity in coronary artery disease.

M Small, G D Lowe, J T Douglas, I Hutton, A R Lorimer and C D Forbes

Br Heart J 1988 60: 201-203
doi: 10.1136/hrt.60.3.201

Updated information and services can be found at:
http://heart.bmj.com/content/60/3/201

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/