Occurrence of valvar heart disease in acute rheumatic fever without evident carditis: colour-flow Doppler identification

Gordon M Folger Jr, Rachel Hajar, Andrej Robida, Hajar Ahmed Hajar

Abstract

Objective—To determine the frequency of occurrence of mitral and aortic valvar regurgitation in rheumatic children in whom there was no evidence of carditis acutely or at an earlier attack.

Design—Colour flow Doppler imaging was used in a non-randomised study of sequentially admitted children who met the criteria for acute rheumatic fever without clinically evident carditis and patients in whom the disease was quiescent after a previous attack of rheumatic fever. Two separate control groups were used for comparison of the echocardiographic findings, and a group of patients with confirmed rheumatic carditis was included for comparison of acute phase and antistreptococcal reactants.

Setting—A general hospital with the only paediatric inpatient department in Qatar.

Patients—From November 1988 to October 1990, 11 children were studied during the acute rheumatic period. In seven additional children the disease was quiescent when they were studied 18 to 36 months after a documented episode of acute rheumatic fever in which there was no evidence of carditis. The control patients were all studied during the same period.

Main outcome measure—Detection of mitral and aortic regurgitation in patients without clinical evidence of rheumatic carditis in the acute or quiescent stages of the disease.

Results—Mitral or mitral and aortic regurgitation was found in 10 of the 11 children studied in the acute rheumatic period. None had a murmur or other evidence of carditis. In all the cases studied the valvar insufficiency was mild. Four of the children studied late in the quiescent period had either aortic or mitral insufficiency by colour flow Doppler evaluation; two children who had previously had valvar insufficiency no longer showed this, and one child without positive findings in the acute phase remained without insufficiency. None of the non-rheumatic control subjects showed mitral or aortic regurgitation.

Conclusions—Colour flow Doppler imaging is a useful method of identifying subclinical mitral and aortic valvar disease at all stages of rheumatic fever when carditis cannot be otherwise detected and is a valuable addition to current diagnostic criteria.

It can be difficult to confirm the diagnosis of acute rheumatic fever when the only major manifestation is non-cardiac. Recurrences are common but with the patient's cooperation they can be prevented: when the heart is affected the prevention of a recurrence is vital.

We showed that Doppler echocardiography identified subclinical (that is, without auscultatory signs) degrees of valvar incompetence involving the mitral and aortic valves in children who had typical migratory polyarthritis as their only major rheumatic manifestation. The purpose of this report is to extend our previous findings by the use of colour flow Doppler echocardiographic studies in both the original group of patients and in newly occurring cases.

Patients and methods

Since our preliminary report that indicated a high incidence of unsuspected mitral and aortic valve disease in a small number of acute rheumatic fever patients without evidence of carditis, we have studied a consecutive series of new cases and patients from the earlier study by adding colour flow imaging to the study design. Four groups of children make up the patient population. Children in group 1 had confirmed acute rheumatic fever without clinical evidence of cardiac involvement: children evaluated since the end of the previous study made up group 1a and children from the original study were group 1b. Group 2 was made up of new patients with obvious carditis who were compared with group 1a for indicators of acute rheumatic fever such as acute phase reactants. Group 2 was not included in the echocardiographic analysis because these children all had clinical evidence of mitral or aortic regurgitation when they entered the study. Group 3 includes children who were admitted to hospital with arthralgia or arthritis during the same period as those in group 1a and were subsequently shown not to have rheumatic fever. Patients in group 4 underwent diagnostic Doppler and colour flow echocardiography for other conditions suspected to be associated with cardiovascular problems.

The sole criterion for entrance into groups 1 to 3 of the study was suspicion by the admitting house officer of the possibility of acute rheumatic fever. In many instances this was a diagnosis by exclusion and with few exceptions was based primarily upon articular complaints.
and findings. A routine blood count, erythrocyte sedimentation rate, C reactive protein, antistreptolysin O titre, chest radiograph, and electrocardiogram were obtained at admission. To allow for night and weekend admissions complete cross sectional echocardiographic study including Doppler and Doppler colour flow imaging were performed within 48 hours of admission, and before any specific treatment for rheumatic fever was started.

The patients were all examined by at least two of us. At least one of us was also involved with the echocardiographic procedures. Except for group 4 patients, who were studied at random, the suspected diagnosis—rheumatic fever—was known to each of us at the time of echocardiographic study. In the initial clinical assessment and before echocardiographic evaluation, the newly presenting children in whom there was interobserver disagreement about the physical findings, principally the nature of any murmur detected, were accepted as having evidence of carditis and automatically assigned to group 2.

All studies were performed with an Accuson 128. Colour flow imaging became available to us in November 1988. This was the starting date of the current study, which finished in October 1990.

The Doppler echocardiographic guidelines used were identical to those of the previous study. Briefly, regurgitant flow relative to the valve under investigation had to be holosystolic (mitral) or holodiastolic (aortic) with peak velocities for both exceeding 2·5 m/s; occasionally an envelope with terminal high velocity signals was difficult to obtain. All colour flow findings continued throughout the appropriate cardiac phase for that valve and clearly had to extend past the paravalvar region. Also, mosaic colour changes indicative of high velocity turbulence had to be seen.

Results
Every patient from the rheumatic groups (1 and 2) satisfied the major and minor aspects of the Jones criteria. Clinically the children in group 1 had only one major criterion (arthritis, chorea, or erythema marginatum) without any supportive clinical evidence of carditis; by contrast the group 2 patients all had auscultatory evidence of carditis or valvitis and thus had two major criteria. Several children from both groups had antistreptolysin O titres in the high normal range, a finding known to occur in roughly 20% of cases of acute rheumatic fever; in our institution we perform no other streptococcal antibody investigations so that evidence of preceding streptococcal infection in these children was suspected but could not be confirmed.

GROUP 1A
Table 1 shows details of the 11 children in group 1A. This brings to a total of 21, including those from the preliminary study, the children who make up our experience of patients with acute rheumatic fever without clinical evidence of carditis. Of these, nine presented with polyarthritis as their only major rheumatic symptom. One child had only a rash, considered to be that of erythema marginatum (patient 6). One child gave a history of chorea lasting more than one month and was having obvious choreiform movements when studied. Figures 1 and 2 show the colour flow Doppler images for this child.

No patient in group 1 showed any of the usually accepted clinical manifestations of active carditis; PR interval prolongation by itself, which was present in nearly 30% of these children, is generally considered non-specific and non diagnostic of rheumatic carditis. In addition to the absence of any murmurs even remotely suggestive of mitral or aortic regurgitation, indicators of carditis such as pericarditis, radiographic change in heart size, or tachycardia persisting longer than the febrile period were not found. Slightly less than half of these children had systolic murmurs of typically innocent quality and in the remainder no murmurs were heard. In no instance was there a history of previous rheumatic fever. All the patients, except one with chorea, were treated with aspirin as their only anti-inflammatory medication.

Table 1. Colour flow doppler imaging acute phase

<table>
<thead>
<tr>
<th>Patient data</th>
<th>Valvar regurgitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>Clinical diagnosis</td>
</tr>
<tr>
<td>Group 1A (non-carditides):</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14, M Arthritis</td>
</tr>
<tr>
<td>2</td>
<td>7, M Arthritis</td>
</tr>
<tr>
<td>3</td>
<td>9, M Arthritis</td>
</tr>
<tr>
<td>4</td>
<td>8, F Arthritis</td>
</tr>
<tr>
<td>5</td>
<td>10, F Arthritis</td>
</tr>
<tr>
<td>6</td>
<td>9, M EM</td>
</tr>
<tr>
<td>7</td>
<td>11, F Chorea</td>
</tr>
<tr>
<td>8</td>
<td>12, M Arthritis</td>
</tr>
<tr>
<td>9</td>
<td>9, F Arthritis</td>
</tr>
<tr>
<td>10</td>
<td>10, M Arthritis</td>
</tr>
<tr>
<td>11</td>
<td>10, F Arthritis</td>
</tr>
<tr>
<td>Group 2 (carditides):</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7-11,</td>
</tr>
<tr>
<td>13</td>
<td>10, M</td>
</tr>
<tr>
<td>14</td>
<td>10, M</td>
</tr>
<tr>
<td>15</td>
<td>7, M</td>
</tr>
<tr>
<td>16</td>
<td>9, F</td>
</tr>
<tr>
<td>17</td>
<td>10, M</td>
</tr>
<tr>
<td>18</td>
<td>10, F</td>
</tr>
<tr>
<td>19</td>
<td>9, M</td>
</tr>
</tbody>
</table>

AR, aortic regurgitation; ASO, antistreptolysin O titre; AVB, atrioventricular block; BESM, basal ejection systolic murmur; CH, chorea; EM, erythema marginatum; ESR, erythrocyte sedimentation rate; MR, mitral regurgitation; N, normal.

AR, aortic regurgitation; ASO, antistreptolysin O titre; AVB, atrioventricular block; BESM, basal ejection systolic murmur; CH, chorea; EM, erythema marginatum; ESR, erythrocyte sedimentation rate; MR, mitral regurgitation; N, normal.
Colour flow Doppler imaging showed mitral regurgitation only in six children (cases 1, 2, 3, 8, 9, 11) and mitral and aortic regurgitation in four (cases 4, 5, 7, 10). The only child without evidence of valvar incompetence was case 6 who had recurrent fever and a circinate rash, thought by many observers to be erythema marginatum. Both symptoms lasted for roughly one month; rheumatic fever in this patient has been neither confirmed nor ruled out. Ten of 11 children therefore, in this study group had evidence of either mitral or mitral and aortic regurgitation with no auscultatory findings.

GROUP 1B
Figure 3 shows that of the preliminary group of 10 subjects, seven had colour flow Doppler analysis 18 months to three years after the acute episode. Of the six children who had positive Doppler echocardiographs in the acute period, four continued to show incompetence of at least one valve and two had become completely normal; none had developed murmurs of mitral or aortic regurgitation. One child who showed no positive findings in the acute period was not followed up. Two other patients not now available to the study, were positive by Doppler echocardiography early in the quiescent period.
Colour flow identification of valvar heart disease in acute rheumatic fever

Table 2 Details of control patients

<table>
<thead>
<tr>
<th>Group</th>
<th>Indication for study (n)</th>
<th>ESR (mm/hr)</th>
<th>ASO (units)</th>
<th>Colour flow Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 3</td>
<td>Tendinitis (1)</td>
<td>50/200</td>
<td>PR</td>
<td>0</td>
</tr>
<tr>
<td>(age range 4–11) (F3 M4)</td>
<td>Reactive polyarthritis (2)</td>
<td>45 < 200</td>
<td>Phys MR</td>
<td>TR</td>
</tr>
<tr>
<td></td>
<td>Non-specific arthralgia (1)</td>
<td>20 < 200</td>
<td>PR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Monarticular arthritis (1)</td>
<td>90/NP</td>
<td>TR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anaphylactoid purpura (2)</td>
<td>55 < 200 (1)</td>
<td>TR</td>
<td>0</td>
</tr>
<tr>
<td>Group 4</td>
<td>Cardiac transplant (1)</td>
<td>NP</td>
<td>TR</td>
<td>0</td>
</tr>
<tr>
<td>(age range 4–5–16) (F4 M3)</td>
<td>Cardiomegaly (2)</td>
<td>0</td>
<td>TR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Obesity (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inconcent murmur (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NP, not performed; Phys MR, physiologic mitral regurgitation; PR, pulmonary regurgitation; TR, tricuspid regurgitation.
imaging identified the site of the valve regur-
gitation and was especially useful in the small
number of children in whom a complete spec-
tral envelope could not be obtained (fig 2). This
small study group represents a considerable
experience of acute rheumatic fever. We are
aware of no other study which Doppler
echocardiography and Doppler colour flow
mapping were used to detect valvar regurgita-
tion in children without clinical evidence of
carditis. Both methods detected regurgitation
in a high proportion of patients. Indeed, the
combined findings of 18 out of 21 patients
studied who had mitral, or aortic regurgitation,
or both, in the acute period is noteworthy.
These findings accord with those of other
groups who used different methods of detec-
tion.14

Several groups have found mitral regurgita-
tion by Doppler and colour flow imaging in
normal children.15-17 From the descriptions of
these it is apparent that the findings are usually
those of abbreviated regurgitant flow into the
left atrium, which we have also found. This
occurs early in systole, occasionally starting in
presystole, and seems to be a physiological
event seen more commonly in older people. If
our guidelines for mitral regurgitation were
strictly followed overdiagnosis of organic
mitral regurgitation is highly unlikely. Recent-
ly published reports18-20 and our own experience
strongly suggest that non-organic (functional)
mitral regurgitation does not produce holosys-
tolic flow by Doppler echocardiography or
colour flow imaging techniques. To our
knowledge aortic regurgitation is not a normal
finding.

These results have several implications for
the diagnosis and management of patients with
rheumatic fever. We believe that the colour
flow Doppler findings should be added to the
existing Jones criteria for diagnosis of acute
rheumatic fever, especially because of the
difficulty encountered when the Jones criteria
are not completely satisfied. Because under the
colour flow Doppler conditions described here
these regurgitant flow patterns are not present in
normal children and young adults,6,21 their
presence when carditis is not clinically
apparent should be of considerable value in the
diagnosis of rheumatic fever. None of the
control patients showed evidence of organic
mitral or aortic regurgitation. As is usual, there
was occasional tricuspid and pulmonary valvar
regurgitation22 in some of the controls as well as
in several of the patients with rheumatic
fever.

Some view the natural history of rheumatic
fever where there is no clinical evidence of
carditis as quite different and more favourable
than when carditis is obvious.9 10 The term
mimetic11 has been applied to each of these
events suggesting reduced likelihood of valvar
heart disease with recurrences of rheumatic
fever when no carditis was obvious during the
initial illness. The current findings however, indicate otherwise. They show
that an appreciable number of these valves have
been rendered incompetent regardless of the
trivial nature of the findings, and many were
still incompetent at follow up examination. To
be more specific, these patients have valvar
heart disease as a result of carditis that was not
evident by the usual clinical means and this
discovery is relevant to the perception of the
natural history of pure rheumatic polyarthritis.
Acute rheumatic fever without carditis is
obviously not the benign entity that others have
indicated, because it is nearly always accom-
panied by subclinical carditis, and the future of
these patients is less certain than has been
supposed.11-13 This also applies to chorea without
evident carditis.

Anatomical deformity aside, it may be that
these valves become more vulnerable12 to
damage by a recurrence of infection. This
possibility must be considered before measures
to prevent rheumatic damage are relaxed.

We believe that the addition of colour flow
Doppler echocardiography to the Jones criteria
for acute rheumatic fever would improve the
identification of patients with mitral or aortic
valve disease who require lifelong prophylaxis
against rheumatic fever but who have no clini-
cal evidence of cardiac involvement.

1 Folger GM Jr, Hajar R. Doppler echocardiographic findings
of mitral and aortic valvular regurgitation in children
manifesting only rheumatic arthritis. Am J Cardiol
2 Markowitz M, Kuttner AG. Rheumatic fever: Diagnos-
tic management and prevention. Philadelphia: WB Sanders,
3 Vassy LG, Wiedmeier SE, Orsmond GS, et al. Resurgence
of acute rheumatic fever in the intermountain area of
4 Steinfeld L, Ritter S, Rappaport H, Martinez E. Silent
rheumatic mitral regurgitation unmasked by Doppler
5 Kostuck W, Vandenbossche J, Friari A, Englert M. Pulsed
Doppler regurgitant flow patterns of normal valves. Am J
evaluation of valvular regurgitation in normal subjects.
7 Berger M, Hecht SR, Van Tosh A, Lingam U. Pulsed and
continuous wave Doppler echocardiographic assessment
of valvular regurgitation in normal subjects. J Am Coll
8 Ad hoc committee to revise the Jones criteria (modified)
of the council on rheumatic fever and congenital heart
disease of the American Heart Association (1965). Jones
criteria (revised) for guidance in the diagnosis of
9 Wenger NK, Leonard R, Bivins B. Acute rheumatic fever
without carditis: a reappraisal. Am J Cardiol 1966; 17:
142-3.
10 Committee on rheumatic fever and bacterial endocarditis
of the Council on Cardiovascular Disease in the Young of
the American Heart Association. Prevention of rheumatic
11 Feinstein AR, Spagnolet M. Mimetic features of rheumatic
12 Rozada V, Williams RG, Chopra P, et al. Tissue distribu-
tion of lymphocytes in rheumatic heart valves as defined
74:90-6.
13

Downloaded from http://heart.bmj.com/ on July 6, 2017 - Published by group.bmj.com
Occurrence of valvar heart disease in acute rheumatic fever without evident carditis: colour-flow Doppler identification.

G M Folger, Jr, R Hajar, A Robida and H A Hajar

Br Heart J 1992 67: 434-438
doi: 10.1136/hrt.67.6.434

Updated information and services can be found at:
http://heart.bmj.com/content/67/6/434

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/