Pulmonary artery rupture in pregnancy complicating patent ductus arteriosus

Nicholas J Green, Terence P Rollason

Abstract
Fatal haemopericardium in a 27 year old pregnant woman was caused by rupture of a dissecting aneurysm of the pulmonary artery. She had an uncorrected patent ductus arteriosus and severe pulmonary hypertension. The wall of the pulmonary artery showed atherosclerosis and cystic medionecrosis.

Case report
A 27 year old West Indian woman with a patent ductus arteriosus had been clinically well and took no medication. Cardiac catheter studies when she was 13 years old had shown pulmonary hypertension with pressures of 70/40 mm Hg. There was reversal of the shunt during exercise (right-to-left), indicating that she was unsuitable for surgery and therefore the patent ductus had remained uncorrected. On examination, the apex beat was displaced laterally to the anterior axillary line and there were signs of pulmonary hypertension—loud pulmonary heart sound (P2) and a palpable pulmonary artery. There was a long early diastolic murmur of pulmonary regurgitation and an ejection systolic murmur. An electrocardiogram showed evidence of right ventricular hypertrophy.

Her first pregnancy, when she was 25 years old, had been uneventful; however, there had been clinical signs of increasing pulmonary hypertension. At 38 weeks' gestation a normal female infant was delivered through the vagina. Immediately post partum the mother developed a pyrexia, which was thought to be endocarditis, and this settled on antibiotics. She was strongly advised to avoid further pregnancy.

The second pregnancy, two years later, was progressing well and she was admitted to hospital for bed rest. She died unexpectedly in bed at 33 weeks' gestation.

Necropsy and histological findings
The body was thin but well nourished (height 163 cm, weight 54.6 kg). There was a large haemopericardium caused by rupture of a dissecting aneurysm of the main pulmonary artery into the pericardial sac at the base of the heart. The main pulmonary trunk was dilated to 5 cm in diameter and the dissection originated in a raised atheromatous plaque on the anterior aspect of the pulmonary artery 3 cm above the pulmonary valve (figs 1 and 2). There was a large patent ductus arteriosus (diameter 2 cm) leading to an aorta of normal calibre. The right ventricle was hypertrophied (100 g). The left ventricle including the septum weighed 160 g. There was no other gross cardiac malformation.

Histological examination of the main pulmonary artery showed a striking accumulation of alcianophilic mucopolysaccharide in the media (cystic medionecrosis) (fig 3) with dissection between the inner and outer halves. There were also small amounts of medial alcianophilic mucin in the aorta. In the lungs there were widespread severe hypertensive changes with pleural lesions (plexigenic pulmonary arteriopathy).

No other anatomical or histological abnormality of significance was seen and the fetus was normal.
Pulmonary artery rupture in pregnancy complicating patent ductus arteriosus

When Coleman et al. reviewed published reports they found only six cases of ruptured pulmonary artery aneurysm associated with patent ductus arteriosus alone, in addition to their own. There have been reports of two more cases. We identified only one report of rupture in pregnancy, however, this was associated with pulmonary infundibular stenosis as well as patent ductus arteriosus. There is also a report of a maternal death occurring 17 hours post partum owing to pulmonary artery dissection associated with a patent ductus alone, presumably precipitated by labour. Our case is the only report we found of rupture during pregnancy associated with a patent ductus as the only anatomical abnormality.

Cystic medionecrosis is usually associated with dissection of the pulmonary artery as is atheroma and our case is no exception. Indeed both are known to be related to severe pulmonary hypertension.

This case emphasises the possibility of arterial dissection in pregnancy, particularly in the presence of pre-existing cardiovascular disease. This association has been well described previously, in particular by Guthrie and MacLean who showed that nine of 57 non-aortic arterial dissections in women occurred either during pregnancy or shortly after delivery.

It is of interest to speculate on the cause of the apparently increased incidence of both systemic and pulmonary arterial dissections in pregnancy. It has been suggested that the increase in body water in pregnancy is in part taken up by connective tissue mucopolysaccharides. Robertson pointed out there is no reason why mucopolysaccharides in the vessel...
wall should not be involved in this process; indeed there is some histopathological evidence that they are. We suggest that the likeliest course of events in our case was cystic medionecrosis and atheroma, followed by dissection and rupture. These were consequent upon the increased cardiac output and exaggeration of mucopolysaccharide deposition associated with pregnancy.

We thank Dr R M Whittington, HM Coroner for the District of Birmingham and Solihull for permission to report this case.

7 Guthrie W, MacLean H. Dissecting aneurysms of arteries other than the aorta. J Pathol 1972;108:219-35.
Pulmonary artery rupture in pregnancy complicating patent ductus arteriosus

Nicholas J Green and Terence P Rollason

Br Heart J 1992 68: 616-618
doi: 10.1136/hrt.68.12.616

Updated information and services can be found at:
http://heart.bmj.com/content/68/12/616

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/