Aspirin does not improve early arterial patency after streptokinase treatment for acute myocardial infarction

R M Norris, H D White, D B Cross, K S Woo, A H Maslowski, M P Caruana, H H Hart, Barbara Williams

Abstract
Objective—To investigate the hypothesis that the magnitude of the life saving effect of aspirin in the second international study of infarct survival (ISIS-2) trial cannot be explained solely by prevention of late reocclusion of the infarct related artery. The aim of this study was to discover whether or not aspirin in combination with streptokinase had an adjuvant thrombolytic effect.

Design—Aspirin (150 mg) or placebo was given at the start of streptokinase infusion to 200 patients seen within six hours of the start of prolonged ischaemic cardiac pain and ST segment elevation. All patients received active aspirin at three hours. Patency of the infarct related artery was assessed non-invasively by the normalised rise of creatine kinase activity at three hours after starting streptokinase in these 200 patients and in a further 52 patients who had already taken aspirin within one week of the start of infarction.

Main outcome measure—Rise in creatine kinase activity from baseline to ≥20% or <20% of the peak rise of activity in blood taken at three hours after starting infusion of streptokinase. This correlates with patency or occlusion of the infarct related coronary artery at about 2-5 hours after streptokinase.

Results—Assessed in this way, patency of the infarct related artery was 60% in patients given aspirin, 63% in those given placebo, and 62% in patients who had already taken aspirin within one week of infarction.

Conclusion—The magnitude of the life saving effect of aspirin remains unexplained. Further investigation is needed into the mechanism of action of antplatelet treatment in relation to thrombolytic treatment.

Thrombolytic treatment is life saving after acute myocardial infarction1 2 by causing recanalisation of the infarct related coronary artery leading to reperfusion of the developing infarct. The second international study of infarct survival (ISIS-2) trial showed that aspirin reduced mortality by almost as much as streptokinase and that the reduction was as great for patients who did not receive streptokinase (about 25 lives saved/1000 patients treated) as for those who did.3 It is widely believed that aspirin prevents late reocclusion of the infarct related coronary artery once recanalisation has occurred. In favour of this are the findings that aspirin prevented reinfarction but did not influence infarct size,4 and that it prevented cardiac death and infarction, presumably caused by arterial occlusion, in patients with unstable angina.5 The magnitude of the benefit from aspirin in the ISIS-2 trial points against such a role as the sole benefit from aspirin; reinfarction in the first month occurs in only 3%-4% of patients after thrombolytic treatment without aspirin6 7 and was fatal in the ISIS-2 trial in 0-9% with aspirin and in 1-3% without.8

Reduction of mortality by aspirin in ISIS-2 for patients given streptokinase was about six times greater than could be explained by reduction of fatal reinfarction.

Our study was designed to assess whether addition of aspirin in the dose that was used in the ISIS-2 trial9 was associated with early patency of the infarct related artery in more cases than if aspirin was temporarily withheld. Arterial patency was assessed non-invasively by measurement of the normalised rise of creatine kinase activity after infusion of streptokinase. The sensitivity, specificity, and prognostic implications of patency assessed by this method have been documented separately.7

Patients and methods
All patients under 76 years of age presenting within six hours of the start of prolonged ischaemic chest pain and ST segment elevation in at least two leads of the electrocardiogram of ≥1 mm in leads II, III, AVF, or V₃-V₆, and ≥2 mm in V₁-V₂, were considered for entry to the study provided that there were no contraindications to giving streptokinase. Patients were asked about aspirin ingestion. Those who had not taken aspirin or compounds containing aspirin within the previous week and who were not intolerant of aspirin were asked to chew a half tablet that contained either aspirin (150 mg) or placebo immediately before the start of an infusion of 1.5 × 10⁶ units of streptokinase given over 30-60 minutes. Aspirin or placebo were randomised in blocks of eight, and the study was double blind.

At the start of the streptokinase infusion, at hourly intervals for four hours, and then at four hourly intervals for 24 hours after strep-
Aspirin does not improve early arterial patency after streptokinase treatment for acute myocardial infarction

After streptokinase, aspirin (150 mg) was given to all patients and this dose was continued daily. Patients who had already taken aspirin also had enzyme activities measured.

In a separate project (still in progress) patients in the present study with first infarction who were not taking angiotensin converting enzyme inhibitors were enrolled in a post infarction trial of oral captopril vs placebo with angiocardiography at three weeks for determination of left ventricular volumes and ejection fraction according to our previously described protocol.3 Patency of the infarct related coronary artery (identified from electrocardiographic and wall motion changes) was assessed by the thrombolysis in myocardial infarction (TIMI) criteria.9 A TIMI grade 2 or 3 was taken to indicate patency. Patients gave informed consent for these studies that were approved by the ethics committees at Green Lane, Middlemore, and North Shore Hospitals.

Differences between categorical values were assessed by the x² test with Yates correction and between continuous variables by use of the paired t-test. Power calculations indicated that we would need 164 randomised patients to show an improvement in early infarct artery patency from 60% to 80% from aspirin with an α error (two sided) of 0·05 and a β error of 0·2.

Results

Two hundred and fifty six patients had serial measurements of enzyme activity for non invasive diagnosis of reperfusion. Of these, 200 had not taken aspirin and were entered into the randomised trial (aspirin 95, placebo 105), whereas 52 had taken aspirin within the previous week, usually given in the Emergency department after the start of symptoms of infarction. Four patients were not given aspirin because of a history of aspirin intolerance. Of the 256 patients, 53 were included in the validation study1 and had angiocardiograms at 2·6 (0·3) hours after thrombolysis, whereas 185 were in the captopril trial and had angiocardiograms at three weeks after infarction. The disparity in numbers between aspirin and placebo (95 vs 105) is explained by the fact that the aspirin or placebo and captopril or placebo were included in the same numbered packets, the aspirin or placebo being discarded for patients who were included in the captopril trial but who had already taken aspirin. By chance, more active aspirin than placebo tablets had been discarded.

Table 1 Patient characteristics at entry and during the three hour trial period

<table>
<thead>
<tr>
<th></th>
<th>Aspirin (n = 95)</th>
<th>Placebo (n = 105)</th>
<th>Previous aspirin (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD) age (yr)</td>
<td>58 (10)</td>
<td>60 (10)</td>
<td>58 (9)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>75</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Mean (SD) time from start of pain to streptokinase infusion (L)</td>
<td>2·8 (1·3)</td>
<td>3·2 (1·3)</td>
<td>3·2 (1·3)</td>
</tr>
<tr>
<td>Previous infarction (%)</td>
<td>9</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Anterior infarction (%)</td>
<td>46</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Concomitant heparin treatment (%)</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 2 Enzymic and angiocardiographic indicators (mean (SEM)) of infarct related arterial patency and infarct size

<table>
<thead>
<tr>
<th></th>
<th>Aspirin (n = 95)</th>
<th>Placebo (n = 105)</th>
<th>Previous aspirin (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK >20% at 3 h</td>
<td>57 (60%)</td>
<td>66 (63%)</td>
<td>32 (62%)</td>
</tr>
<tr>
<td>Peak CK (mIU/ml)</td>
<td>2769 (214)</td>
<td>2636 (183)</td>
<td>3060 (309)</td>
</tr>
<tr>
<td>Time to peak CK (h)</td>
<td>12·2 (0·5)</td>
<td>12·3 (0·6)</td>
<td>12·4 (0·9)</td>
</tr>
<tr>
<td>CK integrated appearance function (IU/ml)</td>
<td>4·0 (0·3)</td>
<td>3·9 (0·9)</td>
<td>4·3 (0·5)</td>
</tr>
</tbody>
</table>

Angiographic indices assessed at three weeks

Patency of the infarct related artery

<table>
<thead>
<tr>
<th></th>
<th>Aspirin (n = 95)</th>
<th>Placebo (n = 105)</th>
<th>Previous aspirin (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>50/71 (70%)</td>
<td>54/75 (72%)</td>
<td>30/39 (77%)</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>58 (1)</td>
<td>57 (1)</td>
<td>56 (2)</td>
</tr>
<tr>
<td>End systolic volume (ml)</td>
<td>71 (4)</td>
<td>65 (4)</td>
<td>66 (4)</td>
</tr>
</tbody>
</table>

CK, creatine kinase.

Downloaded from http://heart.bmj.com/ on June 27, 2017 - Published by group.bmj.com
Discussion

It is generally assumed that the salutary effect of aspirin in the ISIS-2 trial resulted from its antiplatelet action. Platelets contain several substances that could limit the efficacy of thrombolytic treatment and of endogenously mediated thrombolysis. Platelet activation leads to release of arachidonic acid and production of thromboxane A₂. This in turn causes exposure of the platelet GP IIb/IIIa receptor that is the final common pathway leading to platelet aggregation. By blocking the enzyme cyclo-oxygenase, aspirin inhibits production of thromboxane A₂. This leads to inhibition of platelet aggregation.

Streptokinase activates platelets within minutes of administration. Frequent angiography during intracoronary streptokinase infusion showed that reperfusion followed by transient reocclusion occurred in about 35% of patients. Although attributed to vascular reactivity, another likely mechanism for reocclusion during thrombolysis may have been platelet activation leading to recurrent thrombosis. Thus it is possible in the 20%-30% of cases in which treatment with streptokinase fails that reperfusion did in fact occur but had been followed at a short interval by platelet mediated recurrence of thrombosis. A plausible explanation, which has been shown experimentally, for the action of antiplatelet drugs in acute myocardial infarction would be by prevention of recurrent thrombosis leading to reocclusion during or shortly after initiation of the thrombolytic process. Such an effect should be detectable by the finding of an increased patency rate of the infarct related artery in patients treated with aspirin at a time when thrombolysis with streptokinase was well established, say at two to three hours after starting treatment.

As judged by the normalised rate of rise of creatine kinase activity at three hours (and at all periods up to 12 hours) after streptokinase, no difference in early arterial patency was detectable comparing patients given 150 mg aspirin, those given placebo, and those who had already taken aspirin. This was in striking contrast with the clear cut differences that we found between patients with early, late, or no reperfusion as judged by coronary arteriography. Moreover there were no differences among the groups in any of the other enzymatic or angiographic indices of reperfusion or of myocardial infarct size.

The enzymatic method that we used for non-invasive determination of arterial patency has been validated in 60 patients in whom angiographic patency at 2-6 (0-3) hours was compared with the normalised rate of rise of creatine kinase activity at three hours after the starting of thrombolytic treatment. In this study the rise in activity from the start of streptokinase infusion to three hours afterwards was >20% of the total rise to peak activity in 34/37 (92%) of patients in whom the infarct related artery was patent at arteriography. The rise was <20% of peak in 21/23 (91%) of those in whom the artery was occluded. Sensitivity for the test would likely have been higher than 92% in this study if allowance could have been made for the lag period between reperfusion and enzyme washout.

Although the total results of ISIS-2 suggested that benefits from aspirin and streptokinase were independent of each other, subsequent analysis showed that for patients treated within five hours of the start (similar to those in our study) there was a significant interaction between the two agents. Odds of dying were reduced by 47% by streptokinase in the presence of aspirin but by only 26% by streptokinase in the absence of aspirin; for patients treated between five and 24 hours from the start the interaction was in the opposite direction.

This analysis would support an adjuvant thrombolytic action of aspirin, as we postulated, for patients treated early. Our findings however, provide no evidence for this. Although the dose of aspirin (150 mg) was small and we do not know the time after the start of thrombolytic treatment at which effective concentrations were achieved, the drug was given in the same way (crunched in the mouth) and in a similar dose (150 mg v 162.5 mg) to that used in the ISIS-2 trial. Our study pertains only to the first three hours after giving streptokinase, because we thought it unethical to withhold aspirin for longer than this. Early platelet induced silent reocclusion could occur later (say between three and four hours) and a protective effect of aspirin during this time is not excluded. Also not excluded is the possibility that variations in cyclical flow might be inhibited by aspirin, as has been shown experimentally. Our enzymatic method relates mainly to restoration of sustained TIMI 3 patency and intermittent partial reperfusion might be undetected. Moreover our size calculations were by-estimates and expected increases from 60% to 80% in patency of the infarct related artery a smaller increase, say from 60% to 70%, is not excluded.

Aspirin was shown to prevent reinfarction over a three month period in a group of 100 patients, half of whom received thrombolytic treatment, and to reduce the incidence of a
Aspirin does not improve early arterial patency after streptokinase treatment for acute myocardial infarction

combined end point of death, reinfarction, and the need for angioplasty or surgery in 300 patients from three days to three months after streptokinase.19 These beneficial effects no doubt resulted from prevention of late reocclusion of the infarct related coronary artery. As already noted, however, the size of the reduction in mortality from aspirin is too large to be explained solely by reduction in mortality from reinfarction, or indeed from silent reocclusion of the infarct related coronary artery.20

These considerations make it difficult to accept that the magnitude of the effect of aspirin in the ISIS-2 trial can be attributed solely to prevention of reocclusion of the coronary artery. Moreover the present finding, subject to the limitations discussed, provide no evidence for an adjuvant thrombolytic effect. Some different action of aspirin might be postulated,21,22 but no effect on infarct size assessed by enzyme release was apparent either in our study or in one of the earlier trials that showed prevention of reinfarction by aspirin.3 Further clinical trials are needed to explore the mechanism of action of antiplatelet drugs, and of aspirin in particular, in relation to thrombolytic treatment in patients.

We thank the nursing staff in the coronary care units at all three hospitals for their help with this trial. Aspirin and placebo were supplied by Glaxo Group Research, Greenford, Middlesex, UK. We are grateful to Mrs Carol Cautner for typing the paper.

Aspirin does not improve early arterial patency after streptokinase treatment for acute myocardial infarction.

R M Norris, H D White, D B Cross, K S Woo, A H Maslowski, M P Caruana, H H Hart and B Williams

Br Heart J 1993 69: 492-495
doi: 10.1136/hrt.69.6.492

Updated information and services can be found at:
http://heart.bmj.com/content/69/6/492

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/