Permanent pacing after cardiac transplantation

Sir,—Scott et al reported that only a few patients given a permanent pacemaker subsequently needed long-term rate support.1 This accords with our experience and that of other groups.2 We recently learned, however, that what appears to be transient sinus node dysfunction may not be.3 Only one out of three patients fitted with AAI(R) pacemakers that allowed for follow-up determination of sinus node recovery time also had a normal recovery phenomenon. One patient who had been in slow junctional escape rhythm until late in the postoperative period had permanent pacemaker placement before discharge. One year later he was in sinus rhythm at a rate of about 85 beats/min and a Holter recording showed that he was overriding the pacemaker most of the day. This accorded with the findings of Scott et al and Markewitz et al.4 The recovery phenomenon, however, was grossly abnormal with a postspacing pause of more than 4 s during which he had symptoms.5

While it is clear that an abnormal recovery time is not in itself an indication for pacemaker placement, as we stated in our original version of our paper,6 this may not be true in a patient with a cardiac transplant who has had symptoms. Though much is known about the incidence of sinus node dysfunction after cardiac transplantation, the actual incidence of symptoms remains unknown and may be underestimated because of the low threshold for postoperative pacemaker placement. In our series of 90 patients three recipients had to be given a pacemaker.7 Sinus node deficiency had been evident in these patients but its severity had been underestimated.8

We want to draw attention to the fact that late restoration of sinus rhythm in a patient with a heart transplant may indicate reversion to a latent type of sick sinus syndrome rather than normalisation of sinus node function. These patients may still be liable to severe symptoms.

Spontaneous ventricular defibrillation

Sir,—We read with pleasure the article of van Hemel and Kingma on self terminating ventricular fibrillation.1 They suggested that transient ventricular fibrillation is unusual and presumably occurs when there is a rapid and complete re-establishment of preexisting normal electrophysiological properties of the myocardiun. In our study, we related the existence of transient ventricular fibrillation to the rapid electrophysiological improvement during the dynamic process of reperfusion.

We have worked on transient ventricular fibrillation for more than a decade and we want to question these two points. Firstly, transient ventricular fibrillation is not unusual. It has been reported in various mammals2 and it is not so rare clinically.3 Secondly, during ventricular fibrillation there is no coronary circulation and reperfusion stops when ventricular fibrillation starts. For this reason the suggestion that an "increase in organisation of ventricular fibrillation into ventricular flutter" is a result of rapid electrophysiological improvement during the dynamic process of reperfusion (which does not exist during ventricular fibrillation) seems unlikely. Because reperfusion cannot explain the synchronisation of ventricular fibrillation that takes place over time and leads to spontaneous defibrillation we propose an alternative explanation.

On the basis of our experimental study4 we have hypothesised that transient ventricular fibrillation requires the maintenance of a high sympathetic and low parasympathetic level during ventricular fibrillation. This hypothesis was based on results obtained in studies5 showing that transient ventricular fibrillation is a normal feature in mammals that have predominantly sympathetic cardiac autoregulation whereas sustained ventricular fibrillation occurs in those mammals that have predominantly parasympathetic auto regulation.6 Moreover, it has been shown that sustained ventricular fibrillation can be transformed into transient ventricular fibrillation either by pretreatment with various compounds that increase the cardiac catecholamine concentration during ventricular fibrillation7 or by intracoronary administration of adrenaline during ventricular fibrillation.8

Our hypothesis suggests that a high cardiac catecholamine concentration improves intercellular coupling and intercellular synchronisation, leading different myocardial cells to fibrillate coordinately.9 This sympathetically induced synchronisation organises ventricular fibrillation into ventricular flutter and leads to subsequent spontaneous restoration of the sinus rhythm.

According to this assumption, the phenomenon described by van Hemel and Kingma can be related to the increases in sympathetic activity induced by ventricular fibrillation which increase the cardiac concentration of catecholamines over time. In a heart without structural heart damage, this increase in catecholamine concentration organises the configuration of the unsynchronised ventricular fibrillation into more organised "coarse" ventricular fibrillation, which in some cases terminates spontaneously.

The various problems involved in transient ventricular fibrillation were discussed.
Permanent pacing after cardiac transplantation

Gottfried Heinz

Br Heart J 1993 70: 590
doi: 10.1136/hrt.70.6.590

Updated information and services can be found at:
http://heart.bmj.com/content/70/6/590.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/