PRACTICE REVIEWED

Treatment of atrial fibrillation in a district general hospital

Gregory Y H Lip, Kim Nyen Tean, Francis G Dunn

Abstract

Objective—To assess current strategies used to investigate and manage acute atrial fibrillation in hospital.

Design—Prospective survey of all acute admissions over 6 months.

Setting—District general hospital serving a population of 230 000 in north east Glasgow.

Subjects—2686 patients admitted as emergency cases over 6 months.

Results—Of the 2686 patients, 170 (age range 38-95, mean (SD) 73.5 (10.6) years; 70 men (41%) and 100 women (59%)) were admitted with atrial fibrillation. The principal underlying medical conditions were ischaemic heart disease in 79 (46.5%), rheumatic heart disease in 26 (15.3%), and thyroid disease in six (3.5%). Cardiac failure was present on admission in 61 (36%), cerebrovascular events in 23 (14%), and myocardial infarction in 17 (10%). Of those with a history of atrial fibrillation (102 (60%) including 10 with paroxysmal atrial fibrillation) treatment on admission included digoxin in 71 (70%), warfarin in 20 (20%), and aspirin in 17 (17%); the aspirin was predominantly given for concomitant vascular disease. The mean (SD) inpatient stay was 16 days (19.7) (range 1-154) largely due to the patients with stroke. Thyroid function tests were performed in only 63% and echocardiography in 33%. Overall, the rate of introduction of anticoagulation (seven patients) and attempted cardioversion (21 patients: 19 pharmacological and two electrical) was surprisingly low. Only 49 patients (34% of those not on warfarin) had contraindications to anticoagulation: these included peptic ulcer or gastrointestinal bleeding in 18 (12%), dementia in eight (6%), chronic renal failure or dialysis in eight (6%), and alcohol excess in four (3%).

Conclusion—Standard investigations were inadequately used in patients with atrial fibrillation and there was a reluctance to perform cardioversion or to start anticoagulant treatment.

Methods

The hospital is a 990 bed district general hospital serving a population of 230 000 in the north east part of the city of Glasgow and the borough of Strathkelvin. The hospital has a coronary care unit with six medical wards, a renal ward and a large geriatric department. There are nine general physicians, one of whom has a major interest in cardiology. Also there is a full time cardiologist, two renal physicians and four physicians with an interest in geriatric medicine, none of whom undertake general medical receiving duties. The physicians were informed at the start of the study that an audit was going to take place as this is part of hospital protocol. Thereafter, the information was collected from the case records and no further discussions were held with the physicians involved.

Patients were prospectively included in this study if they were found to be in established atrial fibrillation on the admission electrocardiogram, or had developed atrial fibrillation within 48 hours of admission. Patients were studied from the three medical units within the hospital, the coronary care unit the renal unit, and the geriatric wards.

The mode of presentation, cardiac investigations carried out, the aetiology of atrial fibrillation, the treatment before and that initiated after admission, and the inpatient mortality were also noted. The survey therefore assessed the characteristics of the inpatients admitted with atrial fibrillation, duration of stay, whether the aetiology of atrial fibrillation was assessed, what investigations were undertaken, and what their impact on management was and also actual management undertaken on the patient. This was done at the time of admission, during their stay in hospital, and at the time of discharge.

Atrial fibrillation is one of the most common cardiac arrhythmias among acute medical admissions to district general hospitals but there seems to be a wide range of views on its optimal management. This is not surprising as the management of the patient with atrial fibrillation is complicated by such things as diverse therapeutic options, concerns about anticoagulation, and the proarrhythmic effects of antiarrhythmic treatment. We report an audit relating to the investigation and management of patients admitted as emergencies with this dysrhythmia to a district general hospital, for a six month period between 1 September 1991 and 29 February 1992.
Results

During the six months of the study the total number of emergency admissions to the medical and geriatric services was 2686, an average of 448 patients/month (table 1). Over this period, 170 patients (6-3%) were found to have atrial fibrillation (an average of 28 patients/month) of these, 100 (59%) were women. Their mean (SD) age was 73-5 (10-6) years. One hundred and two (60%) patients had a history of atrial fibrillation (including 10-3% who had had paroxysmal atrial fibrillation), and 68 (40%) were newly diagnosed patients, with no previous record of the dysrhythmia.

Medical History and Likely Underlying Aetiology of Atrial Fibrillation

Table 2 shows the underlying medical conditions in patients with atrial fibrillation. The principal conditions were ischaemic heart disease in 79 (46.5%), hypertension in 30 (17.6%), rheumatic heart disease (predominantly mitral valve disease) in 26 (15.3%), and thyroid disease in six (3.5%). Also, 38 patients (22.4%) had a history of cerebrovascular disease, either a stroke or transient ischaemic attack.

Symptoms and Presenting Features on Admission

The commonest presenting symptoms were typically cardiac (table 3). The principal symptoms were breathlessness in 88 (51.8%), chest pain in 58 (34.1%), palpitation in 44 (25.9%), and dizziness or syncope in 32 (18.8%).

Investigations

All patients had an electrocardiogram and chest x-ray film on admission. Recording of clinical data was variable, and complete information on investigations undertaken was only available for 146 patients (86% of 170). Echocardiography was performed in 48 patients (33%). Cardiac enzymes and thyroid function tests were performed in 92 (63%). A treadmill exercise test was performed in five patients (3.4%), and 24 hour Holter monitoring was performed in eight patients (5.5%).

In the 170 patients with atrial fibrillation, a new myocardial infarction was identified on the electrocardiogram in 12 patients (7-1%), and an old infarction was present in 15 patients (8-8%). The commonest was an inferior myocardial infarction, present in 17 (63% of the 27 patients with an infarct on the electrocardiogram). Cardiac ischaemic changes were found in 29 patients (17% of all admissions).

Chest x-rays films showed cardiomegaly in 93 patients (54.7%) of those admitted in atrial fibrillation. Pulmonary congestion was present in 77 patients (45.3%). Of the 48 patients in whom echocardiography was performed, findings included large left atria in 31 (64.6% of 48), mitral valve disease in 39 (81.3%), poor left ventricular function in 30 (62.5%), and left ventricular hypertrophy in 11 (22.9%).

Treatment Before Admission

In those patients with a history of atrial fibrillation (102, including 10 with paroxysmal atrial fibrillation) the commonest treatment before admission was digoxin in 71 (70%). A diuretic was given in 89 (52.4%), and a β-blocker was used in 16 (9.5%). Out of these 102 patients, antithrombotic treatment was used in only 37 patients, with 20 (20%) given warfarin treatment and 17 (17%) aspirin. Among the 17 patients on aspirin, 11 patients were taking aspirin for concomitant vascular disease rather than prophylaxis against thromboembolism.

Treatment Initiated After Admission

In the 68 patients (40% of 170) without a history of atrial fibrillation, digoxin was used in 51 (75%) and amiodarone in 23 (34%). Additional treatment started in the group as a whole included a β-blocker in six patients (3.5% for rate control in atrial fibrillation and treatment of associated angina) and diuretics, with intravenous diuretic required on admission in 52 patients (30.6%) and subsequent maintenance oral diuretic required in 46 patients (27%). Antithrombotic treatment was started in 27 patients. Seven patients (5% of the 150 not previously on warfarin) were given warfarin, and 20 (15% of the 138 not previously on aspirin) were started on aspirin treatment. Of these 20 patients only five were given aspirin as prophylaxis against embolic events; the rest (15 patients) were given aspirin for concomitant vascular disease. Contraindications to anticoagulation were only identified in 49 patients (34% of those not on warfarin); and these included peptic ulcer or gastrointestinal bleeding in 18 (12%), dementia in eight (6%), chronic renal...
failure or dialysis in eight (6%), Crohn's disease in one (0.6%), alcohol excess in four (3%), and other major illness in ten (7%).

Cardioversion was attempted in 21 cases (12.4% of all admissions). Pharmacological cardioversion was the commonest method, used in 19 patients (11.2%), particularly in the coronary care unit. Of these, 18 patients were given amiodarone, but one patient cardioverted after intravenous digoxin. Two patients did not cardiovert. The remaining two patients (1.2%) underwent direct current cardioversion.

DURATION OF STAY AND INPATIENT MORTALITY

Complete information on duration of stay was available for 146 patients (86% of 170). The mean (SEM, range) inpatient stay was 16 (1.63, 1-154) days, largely due to patients with stroke. There was a weak but significant correlation between age and duration of stay (Spearman $r = 0.22$; $p < 0.01$).

There were a total of 26 (15.3%) inpatient deaths. The predominant causes of death were ischaemic heart disease and heart failure. No post mortem examinations were undertaken.

Discussion

The main reasons for treating atrial fibrillation are the prophylaxis of thromboembolic events and control of the ventricular rate. Treatment of atrial fibrillation also improves overall cardiac function and exercise tolerance in these patients. There is, however, often wide variation in the management of this arrhythmia among physicians, both in the choice of investigations and on specific aspects of treatment—for example, in the initiation of anticoagulation.

Standard investigations in a patient with atrial fibrillation should include an assessment of history, clinical state, and possible precipitating factors (alcohol, infection, and others), thyroid state by thyroid function tests, and an assessment of cardiac state by an electrocardiogram, chest x ray film, and echocardiography: Echocardiography will provide useful information on cardiac function and structural heart disease in these patients. Also, measurement of cardiac enzymes (in an acute presentation) and 24 hour Holter monitoring may also be required.

Our study shows a suboptimal application of these standard investigations in the management of patients with atrial fibrillation. For example, echocardiography was only performed in 33% of patients. Interestingly, of these patients, 65% had dilated left atria, 81% had mitral valve disease, and 63% had poor left ventricular function, indicating that useful information was obtained from this investigation. Also, 24 hour Holter monitoring was performed in only 5-5% of patients, though 18-9% had a history of dizziness or syncope. This has important implications as ventricular standstill may commonly occur in patients with controlled atrial fibrillation who complain of dizziness or syncope, and most of these patients will benefit from permanent cardiac pacing. Another mandatory investigation, thyroid function tests, was performed in only 63%. This also has important implications as atrial fibrillation commonly complicates hyperthyroidism, and clinically occult thyrotoxicosis may be the cause of idiopathic atrial fibrillation in an important proportion of cases.

Though the commonest underlying pathology in our patients was ischaemic heart disease, ischaemic changes not associated with infarction were seen on the electrocardiogram in only 17% of patients, whereas changes due to infarction were present in 16% (the commonest was an inferior myocardial infarction). It has been previously noted, however, that when atrial fibrillation is associated with myocardial infarction it is important as an indicator of underlying ventricular dysfunction and a compromised myocardium, although there was no independent effect on mortality.

The frequency with which heart failure accompanies atrial fibrillation is shown by our study. For example 52% of our patients presented with dyspnoea, 45% of patients had pulmonary congestion evident on the chest x ray film, 63% of patients had poor left ventricular function on the echocardiogram, and intravenous diuretic was required acutely on admission in 31% of patients (with subsequent maintenance oral diuretic required in 27%). Clinical heart failure was present in 36% of our patients. A similar proportion (37-5%) of patients with atrial fibrillation was shown in a study of admissions with heart failure to a district general hospital. The presence of atrial fibrillation, however, may be an indicator for an increased risk of death, especially in patients with heart failure and lower filling pressures secondary to vasodilator or diuretic treatment.

Recent large scale randomised studies have established the importance of anticoagulation treatment in the prophylaxis against thromboembolic events in patients with chronic atrial fibrillation. When our study was performed only three of the five large scale studies had been published, but it was evident that therapy did not reduce the risks of stroke by two thirds in patients with chronic atrial fibrillation. Consensus about initiating oral anticoagulation treatment, however, continues to be lacking among general physicians as initiation of anticoagulation in our study was surprisingly low, with only 5% of patients having warfarin added to their treatment. The main concerns about starting warfarin seem to be the inconvenience and safety. Age, however, should not be a contraindication to initiating oral anticoagulation. The main reason for variation by physicians in initiation of such treatment seems to be the perceived differences in the estimated risk of systemic embolism in individual patients. Aspirin is thought to be an alternative and was started in 20 patients in this study (although in most this was for
concomitant vascular disease rather than pro-
phylaxis against thromboembolism), but in
fact, only two of the five trials of warfarin in
atrial fibrillation have reported a reduction
(by about 25%) of thromboembolic risk with
aspirin.7,13 The use of aspirin alone, there-
fore, as an effective antithrombotic agent in
atrial fibrillation remains controversial.11

The haemodynamic disturbance of atrial
fibrillation results essentially from the absence
of atrial systole and from the rapidity and
irregularity of the ventricular response. With
increasing age or heart failure, atrial systole
contributes an increasing amount towards
overall stroke volume. Indeed there is a
significantly improved cardiac output and
exercise capacity after cardioversion of atrial
fibrillation to sinus rhythm.14 In our study,
there was a low rate of attempted cardiover-
sion (12% of patients), with pharmacological
cardioversion the commonest method
for a patient whose rhythm is atrial fibrillation, the
most complete relief of symptoms often
occurs when sinus rhythm is restored.
Cardioversion should therefore have been
attempted in most patients who present with,
atrial fibrillation of recent onset. The proce-
dure is generally more successful in younger
patients with no underlying cardiac disorder
and has the added advantage that warfarin
can be withdrawn after two to four weeks if
sinus rhythm is maintained.15

This study establishes the importance of
atrial fibrillation as a presenting dysrhythmia
amongst emergency medical admissions in a
Scottish district general hospital. As complete
information on duration of stay and investiga-
tions undertaken was available in only 86% of
our patients, our study also highlights some of
the problems that occur in producing accu-
rate figures for admissions. Our study pro-
vides useful information about a common
condition and is particularly important at this
time when medical audits are playing a larger
part in planning the allocation of resources.
For example, the mean inpatient stay in our
study was 16 days, but with a wide range of
1–154 days. This finding and the significant
correlation between age of patient and dura-
tion of inpatient stay has important implica-
tions as the general population becomes more
elderly (with a greater life expectancy) and as
the prevalence of atrial fibrillation increases
with age from 0.5% at 50–59 to 8.8% at
80–89.16–18

In conclusion, atrial fibrillation is a com-
mon finding among emergency medical
admissions to a district general hospital.

Heart failure is the commonest presenting
clinical feature, and ischaemic heart disease is
the most frequent underlying cause. There is
also a suboptimal application of standard
investigations in patients with atrial fibrilla-
tion, and a reluctance to start oral anticoagu-
lation treatment or to consider cardioversion,
both of which are playing an increasingly
prominent part in the management of this
group of patients. These issues need to be
considered to allow better management of
this common arrhythmia.

1 Chang HJ, Bell JR, Deroo DB, Kirk PW, Wasson JH. Physi-
can variation in anticoagulating patients with
2 Rebello R, Brownlee WC. Intermittent ventricular stand-
still during chronic atrial fibrillation in patients with
3 Forfar JC, Miller HC, Toft AD. Occult thyrotoxicosis: a cor-
rectable cause of "idiopathic" atrial fibrillation. Am J
Cardiol 1979;44:9–12.
4 Goldberg RJ, Seeley D, Becker RC, Brady P, Chen Z, Osgan-
an V, et al. Impact of atrial fibrillation on the in-
hospital and long-term survival of patients with acute
myocardial infarction: a community-wide perspective.
5 Parameshwar J, Poole-Wilson PA, Sutton GC. Heart fail-
ure in a district general hospital. J R Coll Physicians Lond
1992;26:139–42.
6 Mittlekauff HR, Stevenson WG, Stevenson LW. Prognostic
significance of atrial fibrillation in advanced
heart failure. A study of 390 patients. Circulation
7 Petersen P, Boysen G, Godtfredsen J, Andersen ED,
Andersen B. Placebo controlled, randomised trial of
warfarin and aspirin for prevention of thromboembolic
complications in chronic atrial fibrillation: the
8 Stroke Prevention in Atrial Fibrillation Study Group
Investigators. Preliminary report of the stroke preven-
9 Stroke Prevention in Atrial Fibrillation Investigators.
Stroke prevention in atrial fibrillation study. Final
10 Boston Area Anticoagulation Trial for Atrial Fibrilla-
tion Investigators. The effect of low-dose warfarin on the risk
of stroke in patients with non-thrombotic atrial fibrilla-
11 Connolly SJ, Laupacis A, Gent M, Roberts RS, Cairns JA,
Joyner C. Canadian Atrial Fibrillation Anticoagulation
12 Eekowitz MD, Bridgers SL, James KE, et al. Warfarin in
the prevention of stroke associated with nonthrombotic
13 Lowe GD. Antithrombotic treatment and atrial fibrilla-
Delayed improvement in exercise capacity after car-
dioversion of atrial fibrillation to sinus rhythm. Br Heart
15 Dunn M, Alexander J, de Silva R, Hildner F. Antithrombolytic
16 Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epi-
dermologic assessment of chronic atrial fibrillation and
risk of stroke: the Framingham study. Neurology
17 Wolf PA, Kannel WB, McGee DL, Meeks SL, Bhatnaha
NE, McNamara PM. Duration of atrial fibrillation and im-
munence of stroke: the Framingham study. Stroke
18 Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an
independent risk factor for stroke: the Framingham
Treatment of atrial fibrillation in a district general hospital.

G. Y. Lip, K. N. Tean and F. G. Dunn

Br Heart J 1994 71: 92-95
doi: 10.1136/hrt.71.1.92

Updated information and services can be found at:
http://heart.bmj.com/content/71/1/92

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/