Cardiac abnormalities in young women with anorexia nervosa

Giovanni de Simone, Luca Scalfi, Maurizio Galderisi, Aldo Celentano, Giuseppe Di Biase, Paolo Tammaro, Mario Garofalo, Gian Francesco Mureddu, Oreste de Divitiis, Franco Contaldo

Abstract

Objective—To identify the characteristics of cardiac involvement in the self-induced starvation phase of anorexia nervosa.

Methods—Doppler echocardiographic indices of left ventricular geometry, function, and filling were examined in 21 white women (mean (SD) 22 (5) years) with anorexia nervosa according to the DSMIII (Diagnostic and Statistical Manual of Mental Disorders) criteria, 19 women (23 (2) years) of normal weight, and 22 constitutionally thin women (21 (4) years) with body mass index <20.

Results—13 patients (62%) had abnormalities of mitral valve motion compared with one normal weight woman and two thin women (p < 0.001) with both control groups. Left ventricular chamber dimension and mass were significantly less in women with anorexia nervosa than in either the women of normal weight or the thin women, even after standardisation for body size or after controlling for blood pressure. There were no substantial changes in left ventricular shape. Midwall shortening as a percentage of the values predicted from end systolic stress was significantly lower in the starving patients than in women of normal weight: when endocardial shortening was used as the index this difference was overestimated. The cardiac index was also significantly reduced in anorexia nervosa because of a low stroke index and heart rate. The total peripheral resistance was significantly higher in starving patients than in both control groups. The left atrial dimension was significantly smaller in anorexia than in the women of normal weight and the thin women, independently of body size. The transmitral flow velocity E/A ratio was significantly higher in anorexia than in both the control groups because of the reduction of peak velocity A. When data from all three groups were pooled the flow velocity E/A ratio was inversely related to left atrial dimension (r = −0.43, p < 0.0001) and cardiac output (r = −0.64, p < 0.0001) independently of body size.

Conclusions—Anorexia nervosa caused demonstrable abnormalities of mitral valve motion and reduced left ventricular mass and filling associated with systolic dysfunction.

(SBr Heart J 1994;71:287–292)
questionnaire. Constitutionally thin women had a history of leanness throughout their life and normal menstruation. Thin women and those of normal weight did not satisfy any of the DSM III criteria for the diagnosis of anorexia nervosa and had normal scores on the food questionnaire.

PROCEDURES
Cross sectional and M mode echocardiographic examination was performed in the morning in a quiet warm room with the subject in the left decubitus position. Transmural and transaortic flow velocities were measured by Doppler echocardiography. Arterial blood pressure was measured at the first and fifth Korotkoff phases with a normal adult or paediatric arm cuff, according to the arm circumference, on a mercury manometer with the subject recumbent at the end of the echocardiographic study.

ECHOCARDIOGRAPHY
We examined the motion of the mitral valve leaflets in the parasternal long axis view, according to the criteria suggested by Pini et al.1 to identify billowing or prolapse. The M mode echocardiograms and Doppler signals were recorded on strip chart paper with the subject in a partial left decubitus position on a SIM7000 Echocardiograph (Esaote, Florence, Italy) connected to a 3-5 or 5 MHz split-annular transducer. M mode recordings were obtained with the ultrasound beam at or just below the tips of mitral valve leaflets in a parasternal short axis view. Strip chart tracings of all patients and controls were interpreted blindly by two observers. Septal and posterior wall thicknesses and left ventricular chamber dimensions were measured in at least three cardiac cycles according to the American Society of Echocardiography and the Penn conventions.8,9 Left atrial dimension was measured in the short axis view of the aortic root at the valve level as the maximum distance between the posterior left atrial wall and the centre of the external interface of the posterior aortic wall.

We used standard methods to calculate left ventricular mass and endocardial fractional shortening.11,12 The observed to predicted midwall thickness was calculated as the sum of the posterior wall and septal thicknesses divided by the diameter of the left ventricular internal chamber in diastole. When the left ventricular structure is abnormal the mechanics of the midwall give a more appropriate assessment of left ventricular performance than the mechanics of the endocardium.13-14

Midwall fractional shortening was calculated as:

\[
\text{FS}_{\text{midwall}} = \frac{(LVIDd + PWTd/2 + IVSTD/2) - (LVIDs + PWTs/2 + IVSTS/2)}{(LVIDd + PWTd/2 + IVSTD/2)}
\]

where s is systole and d diastole, LVID is left ventricular chamber dimension, PWT is posterior wall thickness, and IVST is septal thickness.14

We measured meridional end systolic stress (ESS) on the basis of cuff systolic blood pressure at the end of echocardiographic session according to a validated method15 and we examined the relation between endocardial and midwall fractional shortening and meridional end systolic stress. We predicted endocardial and midwall fractional shortening (FS) from the individual end systolic stress using regression equations based on a healthy reference population of 142 normotensive adults (endocardial FS = 92-22 - 31-64 × log(ESS); midwall FS = 39-98 - 10-32 × log(ESS)).16 The ratio of observed to predicted endocardial or midwall fractional shortening was calculated as an index of left ventricular performance independent of the effect of myocardial afterload.

Stroke volume and cardiac output were measured by pulsed Doppler interrogation of the left ventricular outflow velocity in the long axis apical view and based on the aortic cross sectional area.16 Total peripheral resistance was calculated as 80 times the ratio of mean blood pressure to cardiac output. Left ventricular inflow velocity was measured in the apical four-chamber view under visual and auditory guidance to obtain the maximum peak velocity of transmitial flow in early diastole.17,18 The rapid filling phase peak transmitial flow velocity (velocity E) and the late diastolic filling phase peak transmitral flow velocity (velocity A) were measured and the flow velocity E/A ratio was derived.

BODY SIZE INDEXING
The left ventricular chamber dimension was indexed to the first power of height, whereas left ventricular mass was indexed to height to the 2-7 power, based on results of a recent multicentre study.9 Traditional standardisations for body surface were used for stroke volume and cardiac output, and are also reported for left ventricular mass to facilitate comparison with previous reports.

STATISTICAL ANALYSIS
Data were expressed as the mean (1SD). The χ² statistic was used to evaluate the prevalence of mitral valve motion abnormalities. One-way analysis of variance was used for inter-group comparisons with the step-down multiple stage post-hoc F-test for multiple comparisons.19 We also performed post-hoc tests on values adjusted for potential confounders by analysis of covariance. We used least-squares linear correlation analysis to study univariate relations between variables and partial correlation analysis to control for confounders. The null hypothesis was rejected at a two-tailed alpha value of ≤0-05.

Results
Table 1 shows the general characteristics of women in the three groups. Starving patients had lower heart rates and systolic and diastolic blood pressures than either normal-weight or thin women (0-0001 < p < 0-05).
PREVALENCE OF MITRAL VALVE PROLAPSE

Thirteen (62%) of 21 patients with anorexia nervosa showed mitral valve motion abnormalities (nine with billowing of one or both leaflets and four with prolapse) compared with one (5%) of 19 normal weight women (p < 0.0008) or two (9.1%) of 22 constitutionally thin women (p < 0.001). We did not find Doppler evidence of an important mitral regurgitation jet in patients or controls.

CARDIAC ANATOMY

The left ventricular chamber dimension was smaller in anorexia nervosa than in the control groups (both p < 0.0001) (table 2). These differences remained after indexing for height (table 2) or controlling for body weight, height, and heart rate by analysis of covariance. (adjusted mean values were 4.69 and 4.46 cm for women of normal weight and thin women (p < 0.03) and 3.93 cm for starving patients (both p < 0.0001).

Left ventricular mass was indeed lower in the starving patients than in either the women of normal weight or thin women (both p < 0.0001); thin women had smaller left ventricular masses than women of normal weight (p < 0.005). These differences were confirmed after indexing for height? (table 2) and were slightly reduced after controlling for body weight and height by analysis of covariance (adjusted mean values of left ventricular mass were 107 g and 100 g for women of normal weight and thin women and 92 g for starving patients (p < 0.05 v thin and p < 0.01 v normal weight). In the pooled group left ventricular mass was more closely related to stroke volume (r = 0.70, p < 0.0001) than to systolic blood pressure (r = 0.36, p < 0.005) and was inversely related to flow velocity E/A ratio (r = -0.39, p < 0.002).

Left ventricular relative wall thickness was not statistically altered in patients with anorexia nervosa. After controlling for body weight and height by analysis of covariance, however, the mean value of relative wall thickness was significantly higher in starving patients than in either normal-weight or thin controls (p < 0.0001 and p < 0.02, respectively; adjusted mean values were 0.30 and 0.35 for normal-weight and thin women (p < 0.01), 0.39 for starving patients).

Because differences in left ventricular mass may depend on difference in blood pressure among groups, left ventricular mass/height was also compared after controlling for systolic blood pressure by analysis of covariance. There was no substantial change in the results (adjusted mean values were 33 g/m\(^2\) for normal-weight, 26 g/m\(^2\) for thin women (p < 0.02), and 21 g/m\(^2\) for starving patients (both p < 0.0001).

LEFT VENTRICULAR MECHANICS AND PUMP FUNCTION

End systolic stress was similar in all the groups. There were no significant differences in endocardial and midwall fractional shortening among groups (table 3). However, midwall fractional shortening as a percentage of that predicted from end systolic stress was significantly lower in starving patients than in normal-weight controls (p < 0.02). This difference was considerably overestimated when it was estimated from the less physiologically appropriate measurement of endocardial fractional shortening expressed as a percentage of predicted (p < 0.0004) in normal-weight women and p < 0.04 v thin women).

Cardiac output and cardiac index were lower in starving patients than in either normal-weight or thin controls (comparison with both control groups p < 0.0005, table 3), because of reduced stroke volume and heart rate. Though blood pressure was quite low (table 1) total peripheral resistance was very high in patients with anorexia nervosa (comparison with both control groups p < 0.0001, table 3).

LEFT VENTRICULAR FILLING PATTERN

Consistent with the left ventricular chamber dimension, the left atrial dimension was lower in patients with anorexia nervosa (2.55 (0.33 cm) than in either women of normal weight (3.09 (0.31 cm) or in thin women (2.87 cm).
Table 4 Left ventricular filling pattern in young patients with anorexia nervosa compared with women of normal weight and constitutionally thin women (mean (1SD))

<table>
<thead>
<tr>
<th>Index</th>
<th>Anorexia nervosa (n = 21)</th>
<th>Thin (n = 22)</th>
<th>Normal weight (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak E Velocity (m/s)</td>
<td>0.84 (0.24)</td>
<td>0.90 (0.16)</td>
<td>0.90 (0.14)</td>
</tr>
<tr>
<td>Peak A Velocity (m/s)</td>
<td>0.43 (0.09)</td>
<td>0.52 (0.15)†</td>
<td>0.56 (0.09)†</td>
</tr>
<tr>
<td>Peak E/A ratio</td>
<td>1.96 (0.21)</td>
<td>1.51 (0.19)†</td>
<td>1.52 (0.25)†</td>
</tr>
</tbody>
</table>

* p < 0.05; † and ‡ p < 0.005 or < 0.01 v starving patients.

(0.23 cm) (comparison with both control groups p < 0.0001). Differences remained significant after indexing for height (1·61 (0·19) v 1·74 (0·20) cm in thin women (p < 0·02) and 1·90 (0·22) cm in women of normal weight (p < 0·0001).

The transmitral peak E velocity was similar in patients with anorexia nervosa and in the control groups. In contrast, starving patients had a smaller peak A velocity than normal-weight and thin women (comparisons with both control groups p < 0·05, table 4), which increased the E/A flow velocity ratio (comparison with both control groups p < 0·005). In the pooled group the E/A flow velocity ratio was inversely related to left atrial dimension (r = -0·43, p < 0·0004), left atrial dimension index (fig 1, p < 0·0002), cardiac output (r = -0·64, p < 0·0001), cardiac index (fig 2, p < 0·0001), left ventricular chamber dimension (r = -0·33, p < 0·009), left ventricular chamber dimension/height (r = -0·37, p < 0·003), stroke volume (r = -0·37, p < 0·003), stroke index (r = -0·38, p < 0·003), heart rate (r = -0·64, p < 0·0001), and body weight (r = -0·44, p < 0·0003). The differences in the E/A flow velocity ratio between starving patients and the control groups remained significant after we controlled for heart rate by analysis of covariance (adjusted mean values 1·55 for normal-weight, 1·56 for thin women, and 1·87 for starving patients (comparison with both control groups p < 0·0001). After we controlled for the effect of body weight by partial correlation analysis the relations remained significant for cardiac index (partial r = -0·54, p < 0·0001), left atrial dimension/height (partial r = -0·34, p < 0·007), and heart rate (partial r = -0·56, p < 0·0001).

The relation of left ventricular filling pattern to systolic performance was also investigated. The E/A flow velocity ratio was inversely related to indices of left ventricular performance (r = -0·39, p < 0·002 for endocardial shortening; r = -0·32, p < 0·02 for midwall shortening; r = -0·38, p < 0·003 for observed/predicted endocardial shortening; r = -0·29, p < 0·03 for observed/predicted midwall shortening). These relations remained significant after we controlled for body weight by partial correlation analysis (all p ≤ 0·05).

Discussion

Mortality in anorexia nervosa is high because of suicide and as consequence of uncontrollable protein deprivation.20 As in other forms of malnutrition, the heart can be involved.21-23

In earlier studies a reduction in left ventricular mass was an easily detectable characteristic of the heart involvement in anorexia nervosa but without evidence of left ventricular dysfunction. We extended these observations by studying midwall performance and loading conditions in the left ventricle during the starvation phase of anorexia nervosa. We found a distinctive pattern of left ventricular mechanics.
LEFT VENTRICULAR GEOMETRY

Because of the complex relation between left ventricular mass and measures of body size, we compared women with anorexia nervosa with women with either a normal body size (as in the study of St John Sutton et al) or thin constitution to examine the direct effect of body size. In addition we used a non-linear approach to index left ventricular mass to height. This approach was based on an allometric equation derived from 611 normal-weight normotensive subjects in a multicentre study. We could, therefore, investigate whether or not left ventricular geometric abnormalities were present and were characteristic of the self-induced starvation phase of anorexia nervosa.

As in previous studies, our analysis confirmed that left ventricular mass was reduced in anorexia nervosa in the phase of self-induced starvation. The considerable reduction was only slightly lessened after adjusting for both body weight and height. This procedure may be especially convenient in patients in whom body weight is almost completely determined by lean body mass.

Even after we controlled for blood pressure left ventricular mass remained low in patients with anorexia nervosa. St John Sutton et al speculated that early changes in myocardial afterload induced a downregulation of growth of the left ventricle in these patients. Our results suggest that in starving patients preload too is reduced. Thus in our patients left ventricular mass was mainly reduced because of a decrease in left ventricular chamber dimension. As in hypertensive patients, left ventricular mass was proportional to stroke volume and inversely related to the E/A flow velocity ratio: both relations suggest a considerable reduction of preload in our patients, which would influence left ventricular mass and lead to concentric remodelling of the cavity. This pattern resembles that described by Heymsfield et al in cachectic patients.

LEFT VENTRICULAR FILLING PATTERN

We found that left ventricular filling was severely impaired in patients with anorexia nervosa. In addition to the increased E/A flow velocity ratio, the reduction in left atrial and ventricular dimensions and stroke volume and the inverse relations between the E/A ratio and stroke volume and cardiac output confirm that preload was much reduced in these patients,—exactly the opposite pattern to that seen in obese individuals. Almost all left ventricular filling in patients with anorexia nervosa occurred in the early diastolic phase. Others showed that patients in the starvation phase of anorexia nervosa are severely dehydrated. Compensatory activation of renin-angiotensin system could increase peripheral resistance, despite the reduced blood pressure and the possible reduction of circulating noradrenaline concentrations already reported.

LEFT VENTRICULAR MECHANIC

Left ventricular performance assessed by both the endocardial and midwall approaches was somewhat depressed in anorexia nervosa in the starvation phase, compared with normal-weight women, constitutionally thin women. In earlier studies left ventricular performance was reported to be normal in anorexia nervosa. Different selection criteria in terms of both severity and phase of the disease and differences in the methods may account for these inconsistencies. We assessed left ventricular performance in terms of the difference in left ventricular chamber or midwall shortening from the value predicted for a given level of end systolic wall stress. This method provides a measure of left ventricular function that is independent of the influence of myocardial afterload. Although end systolic stress-shortening relations are principally affected by left ventricular contractility, chronic deviations in preload can influence the degree of ventricular shortening. Evidence of mild left ventricular dysfunction in the starvation phase of anorexia nervosa is therefore not surprising. It resembles the findings in other types of malnutrition.

Though in our evaluation of left ventricular performance we controlled for the effect of afterload (end systolic stress) we could not discriminate between the effects of preload and myocardial contractility. Nonetheless, indirect evidence from earlier studies, which suggested reduced circulating volume, histological abnormalities of the myocardium, and autonomic dysfunction, implies that left ventricular dysfunction in anorexia nervosa is probably caused by both inappropriate left ventricular filling and reduced myocardial contractility. An earlier study suggests that impaired left ventricular filling and the consequent reduction of left ventricular chamber dimension possibly account for the high prevalence of abnormalities of mitral valve motion seen in our patients with anorexia nervosa in the starvation phase.

The identification of silent left ventricular dysfunction in patients with anorexia nervosa in the starvation phase may help us to devise refeeding programmes to prevent heart failure, a complication that often develops during clinical refeeding. The haemodynamic pattern that we found in our study suggests that when there is contractile dysfunction an abrupt increase in preload, which often develops during refeeding, might precipitate heart failure. This dysfunction together with the electrolyte abnormalities that occur during refeeding (that is, hypokalaemia and hypophosphataemia), could lead to sudden death in these patients.

Distinctive cardiac abnormalities were found in starvation caused by anorexia nervosa. There were abnormalities of mitral valve motion without significant mitral regurgitation, reduced left ventricular mass, impaired left ventricular filling, and left ventricular systolic dysfunction. Controlled studies should be performed to show the effect of refeeding on each abnormality and to determine whether any of these abnormalities can be corrected and to evaluate the extent of the recovery.
This study was supported in part by grant (MURST 60%, 1991) from the Ministero dell’Universita’ e della ricerca.

We thank the dieticians (Mia Silvestro and Anna Rita Caldara) and the psychiatrists (Dr. Oreste Bellini and Dr. Giancardo Di Pietro) who cooperated in this study.

Cardiac abnormalities in young women with anorexia nervosa.

Br Heart J 1994 71: 287-292
doi: 10.1136/hrt.71.3.287