How do changes in lifestyle complement medical treatment in heart failure?

J Soler-Soler, G Permanyer-Miralda

Heart failure not only has a poor prognosis but impairs the quality of life. Research on pharmacological treatments continues to try to improve the prognosis and symptoms of patients with heart failure. However, non-pharmacological measures such as exercise and dietary salt restriction have been used to treat heart failure since the time when available drug treatment was limited to digitalis or some rudimentary type of diuretic. Despite dramatic advances in drug treatment, advice on modifying lifestyle still plays an important part in the treatment of a condition which itself influences lifestyle so much.

Modifications of the lifestyle of patients with heart failure may take three different and sometimes conflicting directions: (a) avoidance of harmful habits (excess sodium intake, smoking, alcohol consumption), (b) enhancement of wellbeing (limitation of symptom provoking activity, psychological education for a better acceptance of untreatable limitation), and (c) promotion of favourable changes in neuroautonomic function, muscular status, and peripheral circulation through physical training. The relative emphasis to be laid on the second or third approaches depends on the patient’s condition and overall prognosis. There are patients who, at best, can hope to be free of only the most severe discomfort whereas, in others, to achieve a fairly good or even virtually normal quality of life is a realistic goal.

The areas where lifestyle modification has been advocated for the management of heart failure include diet; the avoidance of toxic habits; physical activity; and psychological adjustment. The evidence on which advice should be given is variable in quality and quantity, and clinicians may be left with little more than common sense for guidance. As in other “common sense” medical approaches, however, experimental research sometimes contradicts what seems obvious – for example, physical activity.

Diet

Dietary advice in heart failure has traditionally concentrated on sodium restriction. Sodium restricted diets were introduced at the beginning of the century, based on the knowledge that in heart failure there is avid sodium reabsorption by the kidney, and the rationale that dietary sodium restriction should favourably affect sodium balance. Thus a diet low in sodium became one of the mainstays of treatment. Well into the 1960s diets with as low a sodium content as 0.5 g/day were recommended. Progressively, this stringent approach gave way to a more liberal daily sodium intake (2–3 g/day) on the assumption that sodium and water retention could be countered by concomitant judicious diuretic treatment without serious side effects. Despite advances in drug treatment, moderate to severe sodium restriction is still considered one of the cornerstones of the treatment of heart failure by many authorities and is included in current workshop recommendations. However, in two recent surveys of doctors’ practice in the management of heart failure, one from the United States and the other from Europe, diet was the first therapeutic measure in only two out of five countries. Some recent reviews on treatment of heart failure do not even mention dietary sodium restriction.

Few modern studies have examined the effects of a low sodium diet in patients with heart failure, and even then the emphasis is on the neuroendocrine or metabolic rather than clinical effect. Severe sodium restriction activates the renin-angiotensin system and sympathetic nerve activity. One reason for the paucity of clinical studies on low sodium diet may be the difficulty in carrying out trials with a control group, in which subjects are given a low sodium intake outside institutional settings. On the other hand, studies conducted on a metabolic ward may be irrelevant to common clinical practice. Another powerful reason is that the effectiveness of a low sodium diet as a general measure might be considered to be too evident to warrant further investigation.

Excessive sodium retention by the kidneys has been consistently shown to be a feature of heart failure – possibly an inappropriate renal response to a fall in cardiac output – and this is the rationale for sodium restriction. Abnormal handling of sodium is a marker of even mild heart failure: Volpe et al recently showed that in patients with left ventricular dysfunction but not in normal subjects atrial natriuretic factor concentration fails to rise in response to a sodium load and sodium retention occurs. They suggested that their findings indirectly supported the usefulness of sodium restriction. However, noticeable differences in avidity for sodium retention during a low sodium diet in patients with heart failure have been found, suggesting the possibility of different optimal regimens in haemodynamically similar patients. In addition, the effect of diuretic treatment can be reduced in subjects given a low sodium diet, thus raising the issue of the appropriateness of stringent sodium reduction when diuretics are given.

In fact, despite the apparently universal consensus on the desirability of a low sodium
diet, information on the influence of sodium restriction on the long term outcome in different clinical settings, with different concomitant treatments, and even in different patients is not available. One report suggests that heart failure due to abnormal left ventricular relaxation in salt sensitive patients with hypertension might be more dependent on sodium induced volume overload. Sodium could be regarded as an actual cause of heart failure in such cases. Even if not directly related to diet, research on the relation between sodium and heart disease is growing.20

Emphasis on the need to restrict dietary sodium in heart failure is justified for doctors on the basis of its effectiveness (even if some aspects deserve further clarification). Although doctors’ contribution to changing general dietary habits in this way is small, there is increasing evidence for the need to limit sodium intake in the Western population to prevent hypertension, a leading cause of heart failure.20 21 The detection of salt sensitive subjects should be relevant in this context.19 20 Thus restricting dietary sodium may be useful in preventing as well as treating heart failure. A reasonably low sodium intake (about 2 g/day) can usually be achieved by the patient with easily acceptable changes in dietary habits.3

An additional way to facilitate the tailoring of sodium restriction is to educate patients into the habit of measuring their diuresis and their weight. Two other well known practical points should also be kept in mind. Firstly, further reductions in sodium intake (down to 0.5–1 g/day), even if more difficult to carry out, may improve symptoms in severe or refractory cases. Secondly, it is important to prevent binging on salt, which may result in acute severe decompensation.8 Poor compliance with a low sodium diet has been reported as one of the causes for emergency admission to hospital in patients with chronic heart failure.22 Efforts to keep dietary sodium low, however, should not result in an insufficient energy intake leading to poor nutritional status. If palatable, salt substitutes can prove to be an alternative approach, care being required to ensure that they are really sodium free.

An issue to be raised is the safety of a low sodium diet. Uraemia associated with sodium depletion was reported as early as 1949.1 In many instances, however, it resulted more from the injudicious use of diuretics than from sodium restriction. The occurrence of acute renal dysfunction, with uraemia and hyperkalaemia, is a well known complication of overzealous treatment of heart failure with diuretics resulting in excessive sodium and volume depletion,15 particularly in vulnerable patients (such as elderly people or those with previous renal or arterial disease in whom renal regulatory mechanisms may be blunted16). Elderly people may be particularly prone to poor acceptance and side effects of moderate to marked sodium restriction (appetite loss, asthena, and confusion).23 24

The introduction and widespread use of ACE inhibitors is another potential cause of renal dysfunction.25 ACE inhibitors reduce the efferent glomerular arteriolar tone, which may result in renal dysfunction, particularly in previously hypertensive patients whose blood pressure has been appreciably reduced,26 even when they do not have renal artery stenosis.27 This problem is not uncommon in patients with severe acute heart failure who have been overtreated with diuretics and ACE inhibitors.28 The contribution of low dietary sodium is difficult to assess. Acute volume losses such as induced by diarrhoea28 may result in unduly severe renal dysfunction if ACE inhibitors have blocked the physiologically protective renin-angiotensin system.

Avoidance of harmful habits
In view of the deleterious effects of smoking on the cardiovascular system and respiratory function, it is obvious that patients with heart failure should not smoke. It is also common practice to forbid alcohol consumption because it may acutely depress ventricular performance.29 In addition, cessation of excessive intake may result in improvement of depressed ventricular function.30 In cases of heart failure clearly not associated with alcohol abuse, however, the psychological consequences of depriving patients of the pleasure of a modest amount of alcohol probably outweigh the questionable long term benefits of abstinence, especially in countries where moderate wine drinking during meals is a widespread habit.

Physical activity
The promotion of physical activity is the greatest recent change advocated for the treatment of heart failure. Classically, rest was emphasised as it seemed obvious that, as the heart was unable to meet the body’s needs, these should be kept to a minimum to decrease cardiac work. As early as the 1960s, however, recommendations3 for prolonged bed rest were already being questioned3 and resumption of moderate symptom free activity was encouraged after compensation had been reached. Research suggested that excessive rest might be harmful by causing muscular deconditioning, whereas exercise programmes resulted in fewer symptoms during everyday activities. Controlled exercise programmes were considered beneficial to the myocardial and muscular circulation, particularly in patients with coronary disease.3 Now exercise is being recommended as a therapeutic intervention for heart failure, at least in selected patients. Some of the features of recent studies on physical exercise in heart failure are relevant to the present discussion.

(1) As mentioned, active physical training may be beneficial in cardiac failure. Training has been consistently shown to improve symptoms, exercise capacity, and peak oxygen uptake and to reduce ventilatory drive during submaximal and maximal exercise.31-35 No complications—for example, exercise induced
of whether the effects of training apply equally to coronary artery disease and to other types of heart disease.

(3) The results of exercise training in heart failure due to diastolic dysfunction have not been addressed.

(4) Although the need to categorise patients

by their haemodynamic features to predict the

outcome of exercise training is recognised,

no specific criteria have been established for

selection. Scalvini et al have suggested that

oxygen uptake of less than 16 ml/kg/min at the

peak workload of exercise testing could

identify a severe subgroup less likely to benefit

from training.44 Such findings should be

further evaluated—as well as the value of

simple clinical variables—as guidelines for

entering a training programme. Clinical

contraindications to training should also be

kept in mind.45

(5) A standard exercise protocol for

adequate evaluation and discrimination of all

patients with heart failure is considered by

some experts not to be available46; in addition,

the issue of whether some type of isometric

training is advisable for these patients has not

been addressed as all published studies deal

with dynamic aerobic exercise.47

(6) As previously stated, no long term

information about patients undergoing

training is available; adverse long term effects

do not have yet been ruled out.

(7) Studies have been performed in

specialised institutions and sophisticated

laboratories, with a particular emphasis on

physiological measurements (although,

remarkably, in the study by Coats et al the

training programme was performed at the

patients' home and not directly supervised48).

Adequate information from community

settings and less selected populations would be

desirable.

The research on exercise programmes

suggests that more liberal counselling

regarding vocational rehabilitation, return to

work, recreational activity, and sexual habits is

warranted in patients with heart failure. Until

more information is available clinicians should

advise patients individually on how much

exercise they should take. Resumption of an

active lifestyle may improve the psychological

outlook. Some decisions—for example, those

regarding returning to work—require clinical

judgment of the functional status of patients,

their psychological demands (or economic

needs), and the activity under consideration.

Psychological adjustment

When patients have been systematically

assessed in quality of life studies, emotional

distress, anxiety, depression, and psychosocial

maladjustment are prevalent in heart

failure.49-51 Improvement has been reported in

response to treatment for heart failure,52 but

occasional patients may benefit from

psychiatric care. Exercise training may improve

the psychological outlook and self confidence

of patients.53 Psychological adjustment to the
lifestyle imposed by the disease usually
requires the patient, the family, and the health care professionals to be fully informed.50

The need for supportive care is increasingly recognised, as is the case with patients after cardiac surgery or myocardial infarction.50 The role of nursing staff may be important in helping patients to participate in a normal daily life, improve their psychosocial and clinical jorphers, and comply and simplify their medical care.1,51 Nursing staff may also help family members to cope.1,51 More research is required on these types of intervention, both in hospital and in the community.

Measurement of quality of life

To assess the effects of modifying lifestyle we should know how to measure them.47 49 52 53 One goal is to have objective evaluations of how and how much heart failure influences patients' lives and of how patients cope with disease. These evaluations may be useful as baseline and outcome measures and should provide a framework to determine the impact of any change on patients' quality of life.

Although there have been advances in the measurement of quality of life in heart failure during recent years, methodological problems remain, and it is premature to advocate its use for clinical purposes in individual patients. The achievement in quality of life measurement in heart failure can be summarised as follows: (a) general profiles of populations with heart failure in terms of quality of life have been developed46 47 53; (b) the validity of the measuring instruments has been tested46 49 54 and correlated with clinical outcome47 49 54; and (c) the need to include quality of life studies as outcome measures in clinical trials such as SOLVD has been recognised.48 49

Problems in measuring the quality of life of patients with heart disease have been recognised for years.52 57 In view of the insufficiency of simple activity scales such as that of the New York Heart Association or similar classifications,56 59 the development of better measuring instruments is required. The ideal instrument should be a valid, reproducible, and sensitive to change measure of symptoms, activity, and emotional and psychological status.52 Several questionnaires and analogue scales have been devised for this purpose.49 56 60-62 Some of them, such as the Minnesota living with heart failure questionnaire, have been validated in more than one large clinical trial.49 55 whereas others, such as the chronic heart failure questionnaire,61 are included as outcome measure instruments in trials now under way. Despite the initial reports on validation and reliability, further experience is required before these measures can be widely accepted. A recent substudy of the SOLVD trial included no less than nine quality of life instruments to be administered to each patient.68 Obviously, such a complex procedure is irrelevant for routine clinical practice. Even for clinical research, a simpler, less cumbersome method is desirable.

34 Scalfini S, Manzoni S, Volterrani M, Schena M, Quadri A, Levi GF. Physical rehabilitation in coronary patients

Downloaded from http://heart.bmj.com/ on June 25, 2017 - Published by group.bmj.com
How do changes in lifestyle complement medical treatment in heart failure?

who have suffered from episodes of cardiac failure. Cardiology 1992;80:417–23.
45 Coats AJS. Exercise rehabilitation in chronic heart failure. J Am Coll Cardiol 1993;22(suppl A):172-7A.
How do changes in lifestyle complement medical treatment in heart failure?

J Soler-Soler and G Permanyer-Miralda

Br Heart J 1994 72: S87-S91
doi: 10.1136/hrt.72.3_Suppl.S87

Updated information and services can be found at:
http://heart.bmj.com/content/72/3_Suppl/S87.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/