Effect of intracardiac repair on biosynthesis of thromboxane A₂ and prostacyclin in children with a left to right shunt

Ian Adatia, Susan E Barrow, Paula D Stratton, James M Ritter, Sheila G Haworth

Abstract

Objective—To investigate the effect of intracardiac repair on the abnormal biosynthesis of prostacyclin (PGI₂) and thromboxane A₂ (TXA₂) in children with congenital heart disease and increased pulmonary blood flow.

Design—A prospective study with immunoaffinity chromatography and gas chromatography-mass spectrometry to measure the urinary excretion products of PGI₂, 2,3-dinor-6-oxo-prostaglandin (PG F₁α, 2,3-dinor-6-oxo-PGF₁α), and TXA₂ (2,3-dinor-TXB₂) before operation, in the first 12-24 h after operation, and at discharge from hospital.

Setting—A supraregional referral centre for patients with congenital heart disease.

Patients—15 patients aged 2 to 60 months (median 7 months) with a left to right shunt who underwent intracardiac repair.

Results—The preoperative 2,3-dinor-TXB₂ excretion rate was greater than that found previously in a control group of 16 healthy children with a median (range) age of 24 (6-36) months (1159(201) vs 592(122) ng/g creatinine in controls, P = 0.006). The excretion rate rose after operation to 9600(3832) ng/g creatinine (P = 0.01) and decreased before discharge to 1071(191) ng/g creatinine (NS), but remained greater than that of the control group (P = 0.014). Before operation 2,3-dinor-6-oxo-PGF₁α excretion rates were similar to those of the healthy children (482(68) vs 589(95) ng/g creatinine in controls) but increased after operation to 19 668(11 162) ng/g creatinine (P = 0.002) and fell at discharge to 1621(245) ng/g creatinine although this was higher than both preoperative and control rates (P = 0.005 and P = 0.0002 respectively). The preoperative ratio of 2,3-dinor-TXB₂ to 2,3-dinor-6-oxo-PGF₁α excretion was greater than that of the control group (3.2(0.4) vs 1.3(0.22) in controls, P = 0.005), decreased significantly after operation to 0.9(0.13) (P = 0.016), and changed little, to 0.7(0.12), before discharge. The last two ratios were similar to those in normal children and significantly lower than those before operation (P = 0.004).

Conclusion—In children with a left to right shunt the ratio of the excretion rates of the metabolites of TXA₂ and PGI₂ was abnormal before operation, which favoured vasoconstriction and platelet aggregation, but had decreased at discharge from hospital. The increase in excretion of PGI₂ metabolites over TXA₂ metabolite after intracardiac repair augurs well for pulmonary vascular recovery.

The pulmonary circulation is exposed to a high shear stress from birth in children with congenital heart disease and a left to right shunt. Structural abnormalities are known to be present by 2 months of age but endothelial dysfunction precedes morphological damage. Recent studies have shown that the metabolism of several vasoactive mediators is abnormal in children with pulmonary hypertension congenital heart disease. An imbalance in eicosanoid biosynthesis with an excess of thromboxane A₂ (TXA₂) over prostacyclin (PGI₂) may occur, as in pulmonary hypertension of other aetiologies. The vasoconstrictor TXA₂ is a proaggregatory substance whereas PGI₂ acts as a physiological antagonist to TXA₂, relaxing vascular smooth muscle and inhibiting platelet aggregation. Thus before operation, children with pulmonary hypertensive congenital heart disease have an imbalance in favour of vasoconstriction and platelet aggregation.

Cardiopulmonary bypass damages the pulmonary endothelium in all patients and those with pulmonary hypertension are particularly vulnerable. Pulmonary hypertension might be mediated by an increase in a vasoconstrictor or decrease in a vasodilator substance. The circulating concentration of the vasoactive substance derived from the endothelium, endothelin, is high in such children, but the release of nitric oxide in response to acetylcholine may be impaired. We hypothesised that if the abnormal ratio of metabolites of TXA₂:PGI₂ that may be present in children with an increased pulmonary blood flow reverted to normal after surgical closure of the shunt this should reduce the dominant effect of TXA₂ after the operation and might provide evidence for concomitant endothelial cell recovery. Persistent abnormalities of eicosanoid biosynthesis might indicate residual haodynamic disturbance. Therefore we investigated the biosynthesis of TXA₂ and PGI₂ in a group of children with a left to right shunt and pulmonary hypertension before, during, and after intracardiac repair.
Both PGJ2 and TXA2 have short half lives in the circulation and hydrolyse spontaneously to 6-oxo-prostaglandin (PG) F1α (6-oxo-PGF1α) and TXB2. Previous investigators have reported transient increases in plasma concentrations of both eicosanoids. Blood sampling may cause local endothelial trauma and platelet activation that can result in artifactual increases of both eicosanoids in blood samples. A non-invasive assessment of the biosynthesis of PGJ2 and TXA2 can be made by measuring eicosanoid metabolites in urine. Excretion of 6-oxo-PGF1α and TXB2 largely reflect renal biosynthesis of eicosanoids whereas 2,3-dinor-6-oxo-PGF1α and 2,3-dinor-TXB2 reflect biosynthesis of PGJ2 and TXA2 outside the kidney. We measured the urinary excretion of these 2,3-dinor metabolites before operation during the first 12–24 hours after the operation, and immediately before discharge from hospital in a group of pulmonary hypertensive children with a left to right shunt. These children were younger than those previously studied, which reflects the trend towards earlier intracardiac repair.

Patients and methods

Patients

The 12 hour urinary excretion of 2,3-dinor-6-oxo-PGF1α and 2,3-dinor-TXB2 was measured in 15 children aged 2–60 (median 7) months (table). Preoperative and discharge urine samples were collected overnight, as were the control samples. Twelve of these children were studied before operation, 12 between 12 and 24 hours after operation, and 11 immediately before discharge at 6–26 (median 12) days after operation. Only six children could be studied serially. No child had renal insufficiency, before or after operation. The parents of all patients gave informed consent.

Before the operation, all the children had a left to right shunt and a chest radiograph showing cardiomegaly and pulmonary plethora. Fourteen children were treated with frusenide and digoxin. Also 10 children received spironolactone and two received captopril. Most of the children underwent intracardiac repair after a cross sectional echocardiographic and Doppler assessment, without preoperative cardiac catheterisation (table). Of these cases, eight had a reliable non-invasive estimation of right ventricular pressure that varied between 45 and 90 (mean 61) mm Hg. The pulmonary arterial pressure was high in all catheterised patients. Estimation of pulmonary artery pressure was made within the week before surgery. Surgery was entirely successful in 12 children but three had a difficult postoperative course. One child had severe pulmonary hypertensive crises and two had residual left to right shunts and remained in heart failure. One of these required reoperation. All 15 patients survived.

METHODS

Analysis of eicosanoid metabolites

Urinary excretion rates of 2,3-dinor-6-oxo-PGF1α and 2,3-dinor-TXB2 were measured with immunoaffinity chromatography and gas chromatography-mass spectrometry as described previously. Briefly, a well mixed sample of 30–50 ml was stored at −20°C until assayed. Urine samples (10 ml) were diluted 1:1 by volume with buffer at pH 8.0 and internal standards of D3H, 2,3-dinor-TXB2 and 3H, 2,3-dinor-6-oxo-PGF1α (5 ng each) were added. Eicosanoids were extracted with cyanogen bromide activated Sepharose columns coating immunoaffinity antibodies that had been raised against 6-oxo-PGF1α and TXB2 and that cross reacted with their respective 2,3-dinor metabolites. Urine samples were applied under vacuum to the columns, which were washed with water (10 ml). Eicosanoids were eluted by addition of 0.5 ml acetonitrile (95:5) and rotation of the columns for 15 min. Samples were taken to dryness (N2 stream) and were derivatised as 3,5-bis-trifluoromethylbenzyl esters and trimethylsilyl ethers. They were analysed with a VG 70-SEQ gas chromatograph-mass spectrometer in the electron capture mode with 12 mass spectrometry. Most of the children underwent intracardiac repair after a cross sectional echocardiographic and Doppler assessment, without preoperative cardiac catheterisation (table). Of these cases, eight had a reliable non-invasive estimation of right ventricular pressure that varied between 45 and 90 (mean 61) mm Hg. The pulmonary arterial pressure was high in all catheterised patients. Estimation of pulmonary artery pressure was made within the week before surgery. Surgery was entirely successful in 12 children but three had a difficult postoperative course. One child had severe pulmonary hypertensive crises and two had residual left to right shunts and remained in heart failure. One of these required reoperation. All 15 patients survived.

METHODS

Analysis of eicosanoid metabolites

Urinary excretion rates of 2,3-dinor-6-oxo-PGF1α and 2,3-dinor-TXB2 were measured with immunoaffinity chromatography and gas chromatography-mass spectrometry as described previously. Briefly, a well mixed sample of 30–50 ml was stored at −20°C until assayed. Urine samples (10 ml) were diluted 1:1 by volume with buffer at pH 8.0 and internal standards of 3H, 2,3-dinor-TXB2 and 3H, 2,3-dinor-6-oxo-PGF1α (5 ng each) were added. Eicosanoids were extracted with cyanogen bromide activated Sepharose columns coating immunoaffinity antibodies that had been raised against 6-oxo-PGF1α and TXB2 and that cross reacted with their respective 2,3-dinor metabolites. Urine samples were applied under vacuum to the columns, which were washed with water (10 ml). Eicosanoids were eluted by addition of 0.5 ml acetonitrile (95:5) and rotation of the columns for 15 min. Samples were taken to dryness (N2 stream) and were derivatised as 3,5-bis-trifluoromethylbenzyl esters and trimethylsilyl ethers. They were analysed with a VG 70-SEQ gas chromatograph-mass spectrometer in the electron capture mode with 12 mass spectrometry.
methylene as reagent gas. Carboxylate anions at mass:charge (m:z) ratio 557 were monitored for 2,3-dinor-6-oxo-PGF, and 2,3-dinor-TXB, and at m:z 561 for the deuterated internal standards. The detection limit for each eicosanoid was 5 pg/ml. Urinary creatinine concentrations were measured with standard biochemical methods. No patient took aspirin or a related substance and all urine samples were found to be free of salicylic acid.24

ANALYSIS OF DATA
The results were expressed as mean (SEM) ng eicosanoid/g urinary creatinine to allow for changes in renal function and urine volume. All data were transformed logarithmically to obtain normally distributed data before analysis. Urinary eicosanoid excretion rates were compared with those found previously in a control group of 16 normal children aged 6–12 (median 24) months with the unpaired Student’s r test. Differences were considered significant at P < 0.05. For comparison of preoperative, intensive care unit (ICU), and discharge values, only paired urine samples from the same patients were studied. A one way analysis of variance (ANOVA) for repeated measures was used to detect differences in the excretion rates of eicosanoids before operation, on the intensive care unit, and at discharge. When significant differences were found (P < 0.05) the Bonferroni procedure for multiple comparisons was used to test for pairwise differences. These were considered significant at P < 0.017. In the three children who had a complicated postoperative course eicosanoid biosynthesis was considered to be different from the group without postoperative complications if their values fell above or below the upper and lower 95% confidence interval (95% CI) of that group.

Results
The mean preoperative excretion rate of 2,3-dinor-TXB, was 1159(201) ng/g creatinine, significantly higher than the excretion rate of 592(122) ng/g creatinine in the healthy control group (P = 0.006). Excluding the three children who had a complicated postoperative course the rate of 2,3-dinor-TXB, excretion increased from the preoperative rate of 1159(697) to 9600(3832) ng/g creatinine in the intensive care unit (P = 0.014), and was 1071(191) ng/g creatinine immediately before discharge P = 0.035 (NS). Its rate of excretion on discharge from hospital was not significantly different from the preoperative rate, but was significantly greater than in the control group (P = 0.014).

Before operation, the mean urinary excretion rate of 2,3-dinor-6-oxo-PGF, was 482(68) ng/g creatinine, similar to the control group (589(95) ng/g creatinine). At 12–24 hours after operation, in the intensive care unit, the rate rose to 19 668(11 162) ng/g creatinine (P = 0.002), and before discharge, it had fallen to 1621(245) ng/g creatinine. This value was higher than both the preoperative baseline values (P = 0.005) and the control group (P = 0.0002). The ratio of 2,3-dinor-TXB, / 2,3-dinor-6-oxo-PGF, excretion before operation was 3.2(0.8), compared with a control ratio of 1.3(0.22) (P = 0.005). At 12–24 hours after operation, the ratio decreased to 0.9(0.13) (P = 0.016). This ratio was similar at the time of discharge (0.7(0.12)) and less than the preoperative value (P = 0.004). The ratio at discharge was not significantly different from the control value.

Concerning the three children who had a complicated postoperative course, in the two who had a residual left to right shunt, the excretion of 2,3-dinor-6-oxo-PGF, at the time of discharge was below the lower 95% CI (440 and 465 compared with upper and lower 95% CIs of 1056 and 2185 ng/g creatinine) for the rest of the patients, although excretion of the 2,3-dinor-TXB, was similar. The ratios of 2,3-dinor-TXB, / 2,3-dinor-6-oxo-PGF, at discharge were above the 95% CI of the other children (2.6 and 3.9 compared with lower and upper 95% CIs of 0.4–1.0). One of these children had a postoperative peak right ven- tricular pressure of 50 mm Hg and a pul- monary:systemic flow ratio of 2:1. He subsequently underwent a second and successful intracardiac repair. On that occasion the excretion of the 2,3-dinor-6-oxo-PGF, at the time of discharge was greater than that seen in any other child and the ratio was 0.5.

The child who had postoperative pul- monary hypertensive crises had a lower excretion rate of 2,3-dinor-6-oxo-PGF, at 12–24 hours after surgery, during the crises, than any other child in the group. During the time she was ill in the intensive care unit the eicosanoid metabolite excretion ratio was 4.0, well above the 95% CI (0.6–1.0) for the postoperative group of patients with an uncomplicated course.

Discussion
Before operation, the 12 hour excretion rate of 2,3-dinor-TXB, was high whereas that of 2,3-dinor-6-oxo-PGF, was at the lower limit of the control group. This significantly if a complicated postoperative course the findings are consistent with those in our previous study in which we found high 2,3-dinor-TXB, excretion in children with congenital heart disease and a high pulmonary blood flow, compared with the same control group.4 In the present study, after operation excretion of both eicosanoid metabolites was noticeably high for longer than has previously been reported.14,15 Other investigators reported an increase in the plasma concentration of 6-oxo-PGF, and TXB, in children during cardiopulmonary bypass that quickly returned to the preoperative concentration in the recovery room.16,17 In patients undergoing palliative cardiac surgery without cardiopulmonary bypass the plasma concentration of TXB, did not change whereas that of 6-oxo-PGF, increased, possibly attributable to intravascular manipulation. In our study, the pronounced increase in both 2,3-dinor-TXB, and 2,3-dinor-6-oxo-
Effect of intracardiac repair on biosynthesis of thromboxane A, and prostacyclin in children with a left to right shunt

PGF, immediately after operation may likewise reflect intravascular manipulation. The increase in 2,3-dinor-TXB after operation might be regarded as an exaggeration of the preoperative state, as cardiopulmonary bypass is known to activate platelets and damage the pulmonary endothelium, which is already injured in pulmonary hypertensive children before bypass.1 2 11 27 The circulating concentration of another vasoactive substance, endothelin, also increases immediately after cardiopulmonary bypass although unlike TXA, the circulating concentration of this mediator is normal before operation.28 Cardiopulmonary bypass damages all endothelia, and the proportion of TXA, and endothelin produced by the systemic and pulmonary vascular beds is unknown. Irrespective of source, both TXA, and endothelin might be expected to have a greater effect on the more reactive damaged pulmonary vascular bed of these children.12 The immediate postoperative increase in PGF, a vasodilator and antiaggregatory substance, might be expected to cause an increase in blood loss.4 Prostacyclin does not inhibit platelet adhesion to damaged vessels but concentrations that prevent platelet aggregation and its therapeutic use has been free of bleeding complications, although not systemic hypotension.29 31 The function of PGF, released locally at sites of incision may therefore be to prevent the thrombus extending from the sites of injury and haemostasis. Its systemic action may help to oppose the excessive vasoconstriction and the hypercoagulable state associated with operation and trauma.

It has been suggested that because of the opposing effects of TXA, and PGF, on blood vessels and platelets, the ratio of biosynthesis of TXA, to PGF, may have greater physiologically relevance than changes in the biosynthesis of either eicosanoid alone.6 20 The ratio is abnormal in several different vascular diseases.4 6 20 25 32 33 In our study, the ratio of excretion of 2,3-dinor-TXB: 2,3-dinor-6-oxo-PGF, was similar to the control group between 12 and 24 hours after cardiopulmonary bypass on account of the increase in PGF,. One exceptional case had pulmonary hypertensive crises and in this child the eicosanoid metabolite excretion ratio was above the upper 95% CI of the other children. These findings raise the possibility that the unopposed action of TXA, may contribute to the pathogenesis of pulmonary hypertensive crises, and might help to explain why an infusion of PGF, is generally more helpful in treating crises than other intravenous vasodilators.34 Thromboxane receptor antagonism prevents pulmonary hypertension and improves right ventricular function after complement induced pulmonary hypertension in dogs and may prove to be a useful adjunct in the treatment of pulmonary hypertension after cardiopulmonary bypass in humans.35 Other vasoactive mediators, such as endothelin, may contribute to postoperative pulmonary vascular reactivity, and nitric oxide release may be impaired.3 15 Nitric oxide has been shown to be an effective pulmonary vasodilator after surgery for congenital heart disease in children.36 Nevertheless, in our study the rise in the 2,3-dinor-TXB: 2,3-dinor-6-oxo-PGF, excretion ratio during a hypertensive crisis suggests an aetiological role for this vasoconstrictor in pulmonary hypertensive crises.

By the time the patients were discharged from hospital, at a median of 12 days after operation, the excretion rate of 2,3-dinor-TXB was still high. Whether this indicates persistent platelet dysfunction after cardiopulmonary bypass or chronic endothelial injury is unknown. The excretion rate of 2,3-dinor-6-oxo-PGF, in those who had undergone a successful repair was greater than in the control group. The mechanism of this change is not understood, although surgery is known to stimulate PGF, production.14 Excretion of 2,3-dinor-6-oxo-PGF, was low, however, after operation in the two patients with a large residual ventricular septal defect. Paradoxically, in vitro an increase in shear stress increases the release of PGF,.36 Also, for those patients with a low rate of 2,3-dinor-6-oxo-PGF, excretion, it was not possible in our study to dissect the blood pressure effect of the increased pulmonary blood flow after operation and its probable consequences, left atrial hypertension, and cardiac dysfunction after bypass.

The postoperative increase in excretion of 2,3-dinor-6-oxo-PGF, after a successful repair meant that when the patients were discharged from hospital the ratio of excretion of the metabolites was similar to that in the control group. A previous study has shown that one year after a successful repair the excretion rates of TXB, and PGF, are normal, indicating recovery of endothelial function.4 Endothelial dependent relaxation in response to acetylcholine is preserved in young children with an increase in pulmonary blood flow, but is impaired in older patients with fixed pulmonary vascular disease.15 37 Progressive endothelial dysfunction may be evident as an imbalance in eicosanoid biosynthesis that might contribute to the pathogenesis of pulmonary vascular disease. Although the numbers in our study are small, the return to normal of the ratio soon after intracardiac repair indicates rapid restoration of the balance between vasoconstrictor and dilator mediators and augurs well for the reversibility of the structural abnormalities.

We thank Professor A J Mallet (Director, UMDS Mass Spectrometry Unit, St Thomas's Campus) for use of mass spectrometry facilities, Dr R Enser for salicylic acid analysis, and the nursing staff of Richard Bonham Carter Ward, Great Ormond Street Hospital for help with the urine collections. The authors also thank Dr K Gavreau ScD of the Harvard School of Public Health for statistical advice. This work was supported by the British Heart Foundation.

Downloaded from http://heart.bmj.com/ on April 3, 2017 - Published by group.bmj.com
Effect of intracardiac repair on biosynthesis of thromboxane A2 and prostacyclin in children with a left to right shunt.

I Adatia, S E Barrow, P D Stratton, J M Ritter and S G Haworth

Br Heart J 1994 72: 452-456
doi: 10.1136/hrt.72.5.452

Updated information and services can be found at:
http://heart.bmj.com/content/72/5/452

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/