Ventricular tachycardia during exercise testing as a predictor of sudden death in patients with chronic chagasic cardiomyopathy and ventricular arrhythmias

Angelo A V de Paola, J Anthony Gomes, Armenio B Terzian, Mauro H Miyamoto, Eulogio E Martinez Fo

Abstract

Objective—To verify the prognostic value of exercise induced ventricular arrhythmias in patients with chagasic cardiomyopathy.

Methods—69 consecutive patients (37 male, 32 female; age range 21–67 years) with chronic chagasic cardiomyopathy and ventricular arrhythmias (more than 10 ventricular premature complexes per hour) were evaluated during treadmill exercise testing, using the Bruce protocol. Protocol end points were peak heart rate or presence of sustained ventricular tachycardia.

Main outcome measure—Sudden cardiac death.

Results—44 patients (group I) developed ventricular tachycardia during exercise testing (five sustained and 39 non-sustained), and 25 did not (group II). After a follow up of 24 (SD 15) months sudden cardiac death occurred in seven patients in group I and in none in group II (P < 0.05).

Conclusions—Ventricular tachycardia on exercise testing is significantly associated with sudden cardiac death in patients with chronic chagasic cardiomyopathy and ventricular arrhythmias.

Keywords: chagasic cardiomyopathy, ventricular tachycardia, exercise testing

Exercise results in a series of alterations which can increase circulating catecholamines and the sympathetic drive to the heart. These physiological changes can affect the myocardium and initiate a ventricular arrhythmia, especially in patients with cardiac disease and left ventricular dysfunction. However, the clinical value of exercise testing for patients with ventricular arrhythmias and coronary heart disease is not established.

Chagas disease is one of the most important cardiac diseases in South America. Left ventricular dysfunction, ventricular arrhythmias, and autonomic changes are common findings in this disease and sudden death is an important problem in areas where the disease is endemic.

The prognostic importance of ventricular arrhythmias during exercise testing has been studied in patients with coronary artery disease. The significance of exercise induced arrhythmias has not been reported in Chagas disease. This study was undertaken to verify the prognostic value of exercise induced ventricular arrhythmias in patients with chagasic cardiomyopathy.

Methods

DEFINITIONS

Chronic chagasic myocarditis was defined as the presence of chronic cardiomyopathy and a positive Machado Guerreiro serum complement and haemaglutinin test.

Ventricular tachycardia was defined as ≥3 sequential ventricular complexes at a rate of >100/min. If this arrhythmia lasted more than 30 seconds or resulted in cardiovascular collapse, it was defined as sustained ventricular tachycardia; if not it was considered to be non-sustained ventricular tachycardia.

PATIENTS, MATERIALS, AND PROCEDURES

The study population included 69 patients with chronic chagasic cardiomyopathy and ventricular arrhythmias. All patients had their antiarrhythmic drugs discontinued for at least five half lives and had more than 10 ventricular premature beats per hour or at least one episode of ventricular tachycardia during a 24 hour Holter monitoring. Three of these patients were on amiodarone therapy (low dose of 200 mg orally per day) and the drug was discontinued for one month before the patient entered the protocol. There were no patients receiving beta blocker therapy. There were 37 men and 32 women, with ages ranging from 21 to 67 years (mean 46, SD 12, years). Thirty two patients had palpitations, 16 had syncope, and seven had clinical documentation of sustained ventricular tachycardia or ventricular fibrillation. Forty eight patients had a history of congestive heart failure; of these 39 were in New York Heart Association (NYHA) class II, and nine were in class III or IV. Each patient was in a compensated state before entering the protocol.

Echocardiography was performed in all patients and ejection fraction was calculated by the Pombo method. Patients suspected of having coronary artery disease underwent a coronary angiography study. No patient had any other identifiable organic heart disease.

Treadmill exercise testing—Exercise testing was performed on a motor driven treadmill...
Relation between clinical variables and sudden cardiac death

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Sudden cardiac death</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF class > II</td>
<td>48</td>
<td>03 (8%)</td>
<td>NS</td>
</tr>
<tr>
<td>CHF class = I</td>
<td>21</td>
<td>04 (11%)</td>
<td>NS</td>
</tr>
<tr>
<td>Syncope</td>
<td>16</td>
<td>02 (12%)</td>
<td>NS</td>
</tr>
<tr>
<td>No syncope</td>
<td>53</td>
<td>05 (9%)</td>
<td>NS</td>
</tr>
<tr>
<td>Palpitations</td>
<td>32</td>
<td>04 (12%)</td>
<td>NS</td>
</tr>
<tr>
<td>No palpitation</td>
<td>37</td>
<td>03 (8%)</td>
<td>NS</td>
</tr>
<tr>
<td>Clinical SuVT</td>
<td>07</td>
<td>02 (28%)</td>
<td>NS</td>
</tr>
<tr>
<td>No clinical SuVT</td>
<td>62</td>
<td>05 (8%)</td>
<td>NS</td>
</tr>
<tr>
<td>Bifascicular block</td>
<td>34</td>
<td>05 (15%)</td>
<td>NS</td>
</tr>
<tr>
<td>No bifascicular block</td>
<td>35</td>
<td>02 (5%)</td>
<td>NS</td>
</tr>
<tr>
<td>>100 VPC/CH on Holter</td>
<td>43</td>
<td>04 (9%)</td>
<td>NS</td>
</tr>
<tr>
<td><100 VPC/CH on Holter</td>
<td>26</td>
<td>03 (11%)</td>
<td>NS</td>
</tr>
<tr>
<td>EF < 0-40</td>
<td>22</td>
<td>02 (9%)</td>
<td>NS</td>
</tr>
<tr>
<td>EF > 0-40</td>
<td>47</td>
<td>05 (10%)</td>
<td>NS</td>
</tr>
<tr>
<td>VT during ET</td>
<td>44</td>
<td>07 (16%)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>No VT during ET</td>
<td>25</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

CHF, congestive heart failure; VPC, ventricular premature complexes; EF, left ventricular ejection fraction; SuVT, Sustained ventricular tachycardia; VT, ventricular tachycardia; ET, exercise testing.

Discussion

Regardless of the mechanisms of cardiac arrhythmias the sympathetic nervous system and circulating catecholamines are very important in arrhythmogenesis. The adrenergic state can suppress or provoke cardiac arrhythmias; serious arrhythmias can be provoked or exacerbated by exercise. Also, patients with exercise induced ventricular tachycardia may be more sensitive to plasma noradrenaline than other patients. The majority of these reports are from patients with coronary heart disease; in some there is a correlation between the occurrence of exercise induced ventricular arrhythmias and significant coronary artery disease and impairment of left ventricular function. On the other hand patients with exercise induced non-sustained ventricular tachycardia and normal cardiac function have a good prognosis. However, the clinical significance of exercise testing in patients with ventricular arrhythmias remains poorly defined.

Chronic chagasic myocarditis is a cardiac
Ventricular arrhythmias and Chagasic cardiomyopathy

The results of our study are applicable to our population with relatively well preserved ventricular function. In this particular subset, exercise testing may be able to select patients who need more aggressive anti-sudden-death therapy. However, the role of inducibility of ventricular tachycardia by programmed stimulation and its suppression with antiarrhythmic drugs needs to be assessed relative to exercise testing in these patients.

2 Califf RM, McKinnis RA, McNeer F, Harrell FE, Lee KL,
Ventricular tachycardia during exercise testing as a predictor of sudden death in patients with chronic chagasic cardiomyopathy and ventricular arrhythmias.

A. A. de Paola, J. A. Gomes, A. B. Terzian, M. H. Miyamoto and E. E. Martinez Fo

Br Heart J 1995 74: 293-295
doi: 10.1136/hrt.74.3.293

Updated information and services can be found at:
http://heart.bmj.com/content/74/3/293

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/