Anatomical dead space, ventilatory pattern, and exercise capacity in chronic heart failure

A L Clark, T P Chua, A J S Coats

Abstract

Background—Patients with chronic heart failure have an excessive ventilatory response to exercise, characterised by an increase in the slope of the relation between ventilation and carbon dioxide production (VE/VEC02, slope). Patients have an altered respiratory pattern with an increased respiratory rate (f) at a given tidal volume (VT), which may result in increased anatomical dead space ventilation.

Methods—The ventilatory responses in 88 patients with chronic heart failure and 43 age matched controls during maximal incremental treadmill exercise were analysed. Peak oxygen consumption (VO2), VE/VEC02 slope, and the slope of the relation between f and VT were derived. Anatomical dead space was estimated from a standard formula and anatomical dead space ventilation calculated.

Results—Peak VO2 was greater (mean (SD)) (33.2 (8.5) v 19.4 (6.7) ml/min/kg; P < 0.001) and the VE/VEC02 slope lower in the controls (25.96 (4.16) v 35.14 (9.80); P < 0.001). During matched submaximal exercise VT was higher (1.97 (0.92) v 1.68 (0.62) l; P < 0.05) and f lower in the controls (18.23 (6.48) v 24.28 (7.58); P < 0.001). At peak exercise there was no difference in VT but VT was higher in the controls (2.66 (0.97) v 1.90 (0.61) l; P < 0.001). The VT/f slope was the same (0.04 (0.04)) in both groups. The intercept of the relation was greater for the control group (1.31 (1.28) v 0.59 (0.83); P < 0.001). Anatomical dead space ventilation was lower in the controls at submaximal work load (4.17 (1.56) v 5.58 (1.93) l/min; P < 0.001). At peak exercise anatomical dead space ventilation was the same in both groups, but was lower expressed as a percentage of total VE in the control group (9.8 (3.3) v 13.5 (4.0); P < 0.001). There were weak relations within the heart failure group alone between VT/f slope and peak VO2 and VE/VEC02 slope.

Conclusions—The relation between anatomical dead space ventilation and VE/VEC02 slope is expected: as f increases, so do VE/VEC02 slope and anatomical dead space ventilation. The VT/f slope was the same in patients with chronic heart failure and controls, so change in respiratory pattern cannot explain the increase in VE/VEC02 slope. The stimulus causing the increased f has yet to be identified.

Keywords: chronic heart failure; dead space; ventilatory pattern; exercise capacity

The excessive ventilatory response to exercise in chronic heart failure is well characterised by an increase in the slope relating minute ventilation (VE) to carbon dioxide production (VEC02). This slope is described by a linear regression function with an r value in excess of 0.9 in almost all cases. The increase in the VE/VEC02 slope is closely related to the degree of exercise limitation as characterised by a reduction in peak oxygen consumption (peak VO2). The cause of the increased ventilation is not definitively established, although an increase in dead space ventilation has been proposed.

One possible contribution to an increase in dead space ventilation is that of anatomical dead space (ADS). Patients with heart failure have an abnormal breathing pattern: at any given VE, tidal volume (VT) is smaller and respiratory frequency (f) is increased. As a result, ADS, even if considered fixed in absolute terms, is ventilated more often, and as a proportion of total ventilation, anatomical dead space ventilation is increased.

We wanted to explore the possible contribution of the altered ventilatory pattern to the increased VE/VEC02 slope, using the slope of the relation between respiratory rate and tidal volume to describe the ventilatory pattern.

Patients and methods

We examined the responses to exercise of 88 patients with chronic heart failure of mean (SD) age 58.6 (11.6) years and compared them with 43 matched controls of mean (SD) age 54.6 (10.5) years. The table gives patient details. Patients were referred for exercise testing as part of their routine assessment. The controls were volunteers from among hospital staff, and in addition some were recruited from among men attending for routine medicals arranged by their companies. These controls gave fully informed signed consent before exercise testing.

Heart failure was diagnosed on the basis of decreased exercise capacity in the presence of impaired left ventricular dysfunction as shown by echocardiograms, radionuclide ventriculography scans, or cardiac catheterisation. All patients were stable for a minimum of 6 weeks before exercise testing. None was oedematous
nor limited by symptoms of angina or claudication. Patients with intercurrent illness or documented lung pathology were excluded.

Participants undertook incremental treadmill exercise tests using a Bruce protocol modified by the addition of a "stage 0" at onset—that is 3 min exercise at 1·61 km/h with a 5% gradient. Exercise to exhaustion was encouraged. Participants breathed through a one way valve connected to a respiratory mass spectrometer (Amis 2000; Odense, Denmark). Metabolic gas exchange (VO2, VCO2) and VE were measured on line every 10 s using the inert gas dilution method. In addition, the mass spectrometer allowed continuous monitoring of fractional carbon dioxide concentration at the mouth. Breathing rate was measured from the capnograph, and VT was calculated from VE and f.

ADS was estimated from the standard formula, \(\text{ADS} = \text{weight} \times 2.2 + \text{age} \). ADS ventilation (\(\text{V ADS} \)) was calculated from ADS \(\times \) f, and was also expressed as a percentage of VE (\(\text{ADS} \times \text{f} \times \text{VE} \times 100\% \)). The values recorded were averages of the last 30 s of each stage of exercise and at peak exercise.

The VE/VCO2 slope and peak VO2 were calculated for each test. The slope of the relation between VT and f was also derived. After exercise the patient was asked for the dominant symptom at peak exercise. The first response was recorded. Quoted results for matched submaximal exercise were taken from the end of stage 1 of exercise.

Results
The table gives the exercise results. The regression coefficient for the VE/VCO2 relation was greater than 0·94 in all cases. As previously reported, there was a negative relation between peak VO2 and VE/VCO2 slope (\(r = -0.59; \text{P} < 0.001 \)) in patients with heart failure.

Figure 1 shows the VT and f at rest, matched submaximal exercise, and peak exercise in patients with chronic heart failure and controls. Bars are standard deviations.
Anatomical dead space, ventilatory pattern, and exercise capacity in chronic heart failure

At peak exercise both groups had similar respiratory rates, but the control group has a much higher VT and hence VE.

ADS was estimated as 231.6 (33.4) in patients with heart failure and 229.4 (28.3) in the controls (P = NS). Figure 2 shows VADS values. As f is greater in heart failure at submaximal exercise, so is VADS, although as a percentage of VE, VADS is not significantly different from controls, reflecting the greater total VE as submaximal work loads in chronic heart failure. As peak f is similar in patients and controls, peak VADS is also the same in both groups; as total VE is greater in the controls, then VADS as a percentage of total ventilation is higher in patients with heart failure.

The VT/f relation was much less strong than that between VE and VCO₂. The mean (SD) correlation coefficient was 0.55 (0.26) for patients with heart failure and 0.44 (0.33) for the controls. The mean slope was the same (0.04 (0.04) in both groups. The intercept on the y axis (that is, VT when f is zero) was 0.59 (0.83) in the patients with chronic heart failure and 1.31 (1.28) in the controls (P < 0.001).

We could identify a break point in the VT/f relation in only four patients and in two controls, unlike the situation reported by Yokoyama et al, who reported a point at which f started to increase relative to VT, which corresponded to the onset of dyspnoea. The slope of the VT/f relation was the same in the patients stopped by breathlessness (70-5%) and in those stopped by fatigue (29-5%) (0-03 (0-03) in both subgroups).

Figure 3 shows the data plotted for the two groups, which may give the misleading impression of such a break point; this plot shows that the VT/f relation is similar in patients and controls (0-04 (0-04) in each group), but is displaced downwards and to the right in heart failure.

CORRELATES OF VENTILATORY RESPONSE

There was a weak relation between the VT/f slope and both peak VO₂ (r = 0.29; P = 0.006) and VE/VCO₂ slope (r = −0.30; P = 0.005). There was no correlation between peak VADS and either peak VO₂ or VE/VCO₂ slope in patients with heart failure. Expressed as a proportion of VE, there was a significant negative relation with peak VO₂ (r = −0.52; P < 0.001). Submaximal VADS correlated with peak VO₂ and VE/VCO₂ slope (fig 4).

Discussion

The pathophysiological mechanism underlying the increased VE/VCO₂ slope in chronic heart failure remains unexplained. In the cardiological literature, reference to the alveolar ventilation equation—that is VE/VCO₂ = 863/(PaCO₂ × (1 − VT/VT))—where PaCO₂ is the alveolar carbon dioxide tension, VT/VT is dead space as a fraction of VT, and 863 is a constant, is taken as evidence that the cause of the increased VE/VCO₂ slope in the face of near normal arterial blood gas tensions must be increased dead space. A major contribution to such an increase in dead space ventilation could arise from an increase in VADS consequent on a change in ventilatory pattern. If this was the case, then it might be anticipated that the relation between VT and f would be shallower in patients with chronic heart failure with an increase in VE being met predominantly by a rise in f rather than VT. It might be thought that the slope of this relation would correlate with exercise capacity and VE/VCO₂ slope.

In the present study we have shown no difference between the VT/f slope in patients with chronic heart failure and controls. There were weak relations within the heart failure group alone between VT/f slope and peak VO₂ and VE/VCO₂ slope. This relation disappeared when all participants were analysed together. The intercept value was higher for the controls, indicating that VT was about 0.72-1 greater in controls, but there was considerable overlap between the two groups. The VT/f slope was the same regardless of symptoms at peak exercise, which fits with our earlier suggestion that breathlessness and fatigue represent a single physiological process, perhaps not related to ventilatory abnormality.

We found that both groups stopped exercising when the peak f was about the same.

Figure 4 Submaximal anatomical dead space ventilation (VADS) as a "predictor" of peak oxygen consumption (peak VO₂) and the VE/VCO₂ slope. Open symbols refer to peak VO₂ and filled symbols to the VE/VCO₂ slope. Diamonds refer to patients and squares to controls.
Patients with chronic heart failure reached this point at a lower \(V_t \), and thus with a higher \(V_{ADS} \) as a proportion of \(V_E \). Conversely, at matched work load, as ventilation was greater in the patients with heart failure, the greater minute \(V_{ADS} \) was a similar percentage of total \(V_E \). The relation between dead space during submaximal exercise and exercise capacity is expected; submaximal \(V_{ADS} \) increases as \(f \) increases. As \(f \) increases at a given level of \(V_{CO_2} \), so does \(V_E/V_{CO_2} \); given the negative relation that exists in heart failure between \(V_E/V_{CO_2} \) slope and peak \(V_O_2 \), it is inevitable that \(V_{ADS} \) and peak \(V_O_2 \) will correlate.

These results suggest that \(V_{ADS} \) is not an important contributor to the increased ventilatory response to exercise in chronic heart failure. Changes in \(V_{ADS} \) may result from a change in ventilatory pattern, but the \(V_t/f \) slope was the same in patients with heart failure and controls. We have previously shown that there is no relation between altered respiratory pattern and the \(V_E/V_{CO_2} \) slope in normal controls.\(^{15}\) Rather than the increase in \(V_{ADS} \) leading to an increased \(V_E/V_{CO_2} \) slope, both can be thought of as arising as a consequence of an alteration in ventilatory pattern. The nature of the stimulus causing the increased \(f \) has yet to be identified.

Anatomical dead space, ventilatory pattern, and exercise capacity in chronic heart failure.

A. L. Clark, T. P. Chua and A. J. Coats

Br Heart J 1995 74: 377-380
doi: 10.1136/hrt.74.4.377

Updated information and services can be found at:
http://heart.bmj.com/content/74/4/377

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/