Exercise ventilation after balloon dilatation of the mitral valve

Adrian P Banning, Neil P Lewis, J Stuart Elborn, Roger J C Hall

Abstract
Background—Exertional dyspnoea is a limiting symptom in many patients with mitral stenosis but its causes remain incompletely understood. Ventilation during exercise is abnormal in chronic heart failure of all causes and there is increased ventilatory cost of carbon dioxide production.

Patients—23 patients with rheumatic mitral stenosis undergoing percutaneous balloon dilatation of the mitral valve were studied to investigate exercise ventilation.

Methods—Treadmill exercise tests with respiratory gas analysis were performed before and 1 day, 7 days, and 10 weeks after balloon dilatation of the mitral valve. The relation between ventilation (Ve) and production (VCO2) was analysed by linear regression.

Results—The Ve/VCO2 slope was linear in all patients and before balloon dilatation of the mitral valve it correlated inversely with peak minute oxygen consumption (Vo2) (r = −0.47, P < 0.05), exercise duration (r = −0.66, P < 0.01), and mitral valve area (r = −0.5, P < 0.05). The Ve/VCO2 slope declined acutely after balloon dilatation of the mitral valve (n = 10) (mean (SD) 41 (4) v 36 (2.9), P < 0.05) and did not change again thereafter. At 10 weeks (n = 23) exercise duration (460 (230) v 630 (240) s, P < 0.01) and peak Vo2 (12.7 (4.3) v 14.9 (4.8) ml/kg/min, P < 0.05) increased significantly.

Conclusions—Patients with rheumatic mitral stenosis have a similar increase in the Ve/VCO2 slope to that of patients with heart failure from other causes. Successful balloon dilatation of the mitral valve is associated with an acute reduction in the exercise Ve/VCO2 slope.

Keywords: balloon dilatation of the mitral valve; exercise ventilation; chronic heart failure; mitral stenosis

The haemodynamic changes that occur during exercise in patients with mitral stenosis are well documented1 but the causes of exertional hyperpnoea have never been fully elucidated. Possible causes including enhanced central respiratory drive, reduced lung compliance, and pulmonary congestion leading to stimulation of juxta pulmonary capillary receptors have been suggested.2

The ventilatory response to exercise is abnormal in chronic heart failure (CHF) of all causes.3 There is an excess ventilatory cost of carbon dioxide (CO2) production and this is reflected by an increase in the slope of the linear relation between CO2 production and ventilation.4,5 This increase in slope is related directly to exercise capacity at levels of peak minute oxygen consumption (Vo2) <20 ml/kg/min4 and reflects increased physiological dead space ventilation. Patients with mitral stenosis have increased ventilation of physiological dead space at rest.6 Unlike conventional surgical treatment for mitral stenosis, percutaneous balloon dilatation of the mitral valve allows assessment of exercise dynamics immediately after palliation of valve disease, without confounding postoperative changes. We have investigated hyperpnoea in mitral stenosis by observing the time course of changes in cardiorespiratory function after balloon dilatation of the mitral valve and their temporal relation to improvement in exercise haemodynamics.

Patients and methods

PATIENTS
The study population consisted of 23 patients (22 women; mean (SD) (range) age (58 (10) (44–74) years) with rheumatic mitral stenosis undergoing routine balloon dilatation of the mitral valve. Two patients were in New York Heart Association class II for heart failure, 19 in class III, and two in class IV. All patients had normal coronary arteries and a left ventricular ejection fraction >40% on angiography (normal range 55–70%). Patients with aortic valve disease, evidence of bronchopulmonary disease, or other serious medical conditions were excluded. Medication was continued unchanged throughout the study and is summarised in table 1.

STUDY PROTOCOL
Consecutive patients (n = 23) performed maximal exercise testing 24 h before balloon dilatation of the mitral valve and 10 (range 9–15) weeks after the procedure. Table 1 gives patient details. Ten consecutive unselected patients (nine women; mean (SD) (range) age (60 (10) (45–70) years) also performed exercise tests at 24 h and 10 days after the procedure. Exercise testing at 24 h was submaximal and limited to 75% of the
maximum workload, before balloon dilatation of the mitral valve, in view of recent femoral arterial cannulation. All participants gave informed consent.

EXERCISE TESTING

After familiarisation patients performed progressive symptom limited exercise testing using the Weber et al protocol. Expired respiratory gases were collected and passed to a mass spectrometer (Airspec 2000; Airspec, Bromley, Kent). Argon dilution was used to give on line measurement of minute ventilation (VE), minute CO2 production (VCO2), and VO2. Peak VO2 was determined from the mean VO2 over the final 30 s of exercise. The relation during exercise between VE and VCO2 (plotted every 15 s) was analysed by linear regression.

PERCUTANEOUS BALLOON DILATATION OF THE MITRAL VALVE

Cardiac output was measured using the Fick method and mitral valve area was calculated using the Gorlin formula. Balloon dilatation of the mitral valve was performed using the Inoue et al technique without complication. Table 1 presents the changes in mitral valve area. Measurements after balloon dilatation of the mitral valve were repeated with the balloon catheter in place across the atrial septum. This avoided the possibility of a spurious increase in mitral valve area induced by the small left to right shunt.

STATISTICAL ANALYSIS

Data are reported as group mean (SD). The significance of differences was tested using non-parametric statistical analysis (Wilcoxon signed rank for paired data and Mann-Whitney U for unpaired data). Correlations were examined using the Spearman’s rank test (rS). A p value <0.05 was considered significant.

Table 1 Patient population

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Rhythm</th>
<th>Treatment</th>
<th>MVA</th>
<th>Immediately after dilatation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>65</td>
<td>AF</td>
<td>W,D,F</td>
<td>1.02</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>46</td>
<td>SR</td>
<td>F</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>44</td>
<td>SR</td>
<td>W,E,A</td>
<td>1.3</td>
<td>2.09</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>45</td>
<td>AF</td>
<td>W,D,F</td>
<td>1.08</td>
<td>1.75</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>58</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>58</td>
<td>SR</td>
<td>F</td>
<td>1.17</td>
<td>1.73</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>55</td>
<td>AF</td>
<td>W,D,F</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>53</td>
<td>AF</td>
<td>D,F</td>
<td>0.95</td>
<td>1.63</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>52</td>
<td>AF</td>
<td>D,F</td>
<td>0.8</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>74</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.85</td>
<td>1.4</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>54</td>
<td>AF</td>
<td>W,D</td>
<td>1.17</td>
<td>1.6</td>
</tr>
<tr>
<td>12*</td>
<td>F</td>
<td>70</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.83</td>
<td>1.07</td>
</tr>
<tr>
<td>13*</td>
<td>F</td>
<td>67</td>
<td>AF</td>
<td>D,F</td>
<td>0.8</td>
<td>1.34</td>
</tr>
<tr>
<td>14*</td>
<td>M</td>
<td>60</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>71</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>60</td>
<td>SR</td>
<td>W,F</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>17*</td>
<td>F</td>
<td>70</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.73</td>
<td>1.05</td>
</tr>
<tr>
<td>18*</td>
<td>F</td>
<td>45</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.81</td>
<td>1.58</td>
</tr>
<tr>
<td>19*</td>
<td>F</td>
<td>46</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.92</td>
<td>1.13</td>
</tr>
<tr>
<td>20*</td>
<td>F</td>
<td>55</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>21*</td>
<td>F</td>
<td>61</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>22*</td>
<td>F</td>
<td>72</td>
<td>AF</td>
<td>W,D,F</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>23*</td>
<td>F</td>
<td>58</td>
<td>SR</td>
<td>F,A</td>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*Patients exercised at 24 h, 10 days, and 10 weeks after balloon dilatation of the mitral valve. AF, atrial fibrillation; SR, sinus rhythm; W, warfarin; D, digoxin; F, frusemide; A, angiotensin converting enzyme inhibitor; MVA, mitral valve area (Gorlin); PAP, systolic pulmonary artery pressure measured before balloon dilatation of the mitral valve.

Results

EXERCISE TESTING BEFORE BALLOON DILATATION OF THE MITRAL VALVE

The limiting symptom in the 23 patients was breathlessness. Figure 1 shows a representative example of the exercise relation between VE and VCO2. The VE/VCO2 slope was linear in all patients (r > 0.92 in every test) and, as in chronic heart failure from other causes, it correlated inversely with peak VO2 ml/kg/min (fig 2, r = -0.47, P < 0.05). The VE/VCO2 slope also correlated inversely with exercise duration (fig 3, r = -0.66, P < 0.01) and with mitral valve area measured before balloon dilatation of the mitral valve (fig 4, r = -0.5, P < 0.05). There was no relation between VE/VCO2 slope and pulmonary artery systolic pressure.

EXERCISE TESTING AFTER BALLOON DILATATION OF THE MITRAL VALVE

Submaximal exercise testing at 24 h (n = 10) was performed without complication. The
ventilatory response to exercise. This is indicated by an increase in the slope of the linear relation between ventilation (Ve) and VCO2 during exercise. As with CHF from other causes, the slope of this relation in mitral stenosis is related directly to exercise capacity expressed as peak VO2. Improved exercise duration after balloon dilatation of the mitral valve was associated with an increase in peak VO2 and a decrease in the exercise Ve/VCO2 slope. The change in slope occurred within 24 h of balloon dilatation and did not change again thereafter.

The exercise Ve/VCO2 slope is increased in CHF of all causes.1 It reflects increased dead space ventilation which comprises anatomical dead space, physiological dead space, and apparatus dead space. In normal individuals the ratio of total ventilation to dead space ventilation decreases during exercise as tidal volume increases. When lung compliance is reduced by pulmonary congestion, tidal volumes are smaller and the ratio of total ventilation to dead space ventilation is increased.10 This increased anatomical dead space ventilation in patients with CHF accounts for only one third of the increased Ve/VCO2 slope.1 The remainder reflects increased physiological dead space ventilation secondary to mismatching between ventilation and perfusion during exercise.5 As the Ve/VCO2 slope and peak VO2 are similarly related in patients with CHF and in those with mitral stenosis, the increased exercise ventilation in mitral stenosis probably reflects mismatching between ventilation and perfusion.

The distribution of resting lung ventilation and perfusion in patients with mitral stenosis has been studied extensively. There is an increase in relative perfusion to the apex of the lung11 12 and a reduction in ventilation of the lung bases.11 13 These abnormalities are exaggerated after exercise.14 The resulting resting ventilation/perfusion ratios which are normally high in the lung apices and low in the bases are reversed, with a relatively uniform distribution of ventilation/perfusion ratio throughout the lung. This pattern of ventilation/perfusion abnormality is similar to patients with CHF from other causes.15

Static lung function may be abnormal in patients with mitral stenosis. The abnormalities are usually non-specific but include reductions in vital capacity and dynamic lung compliance, peripheral airway

Table 2 Cardiorespiratory data obtained before and after balloon dilatation of the mitral valve (n = 10)

<table>
<thead>
<tr>
<th>Exercise duration (s)</th>
<th>Before balloon dilatation of the mitral valve</th>
<th>24 h</th>
<th>10 days</th>
<th>10 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak VO2 (ml/kg/min)</td>
<td>380 (200)</td>
<td>355 (210)</td>
<td>543 (208)*</td>
<td>683 (256)*</td>
</tr>
<tr>
<td>Ve/VCO2</td>
<td>41 (4)</td>
<td>36 (2.9)*</td>
<td>36 (3)*</td>
<td>34 (2.9)*</td>
</tr>
<tr>
<td>RER,ss</td>
<td>1.08 (0.1)</td>
<td>0.96 (0.1)</td>
<td>1.01 (1)</td>
<td>1.08 (0.1)</td>
</tr>
</tbody>
</table>

Values are mean (SD).
*P < 0.01 change from baseline; †P < 0.05 change from baseline; Peak VO2, oxygen consumption at peak exercise; RER,ss, respiratory exchange in ratio at peak exercise; Ve/VCO2, Ve/VCO2 slope (laboratory normal range 21-31).

obstruction, and reduced pulmonary diffusion capacity. Improvement in the $VE/\dot{V}CO_2$ slope could reflect a primary improvement in lung function. However, abnormalities in the alveolar/capillary membrane are not readily reversed and increases in vital capacity after balloon dilatation of the mitral valve do not correspond to the decrease in mean pulmonary artery pressure. These data and the rapid change we have observed in the $VE/\dot{V}CO_2$ slope suggest that abnormality of the slope in mitral stenosis reflects impairment of the haemodynamic response to exercise and is not a feature of long standing pulmonary vascular change or a reflection of primary improvement in lung function.

In healthy individuals and patients with mild CHF and a peak $V_O_2 > 20$ ml/kg/min there is no relation between the $VE/\dot{V}CO_2$ slope and peak V_O_2. This study demonstrates a persistence of the inverse relation between peak V_O_2 and the $VE/\dot{V}CO_2$ slope after balloon dilatation of the mitral valve. Reductions in pulmonary capillary wedge pressure, pulmonary artery pressure, and mitral valve gradient after balloon dilatation of the mitral valve are well recognised. These changes are associated with increases in exercise cardiac output, increased exercise duration, and improved symptomatic status at follow up.

Mitral flow dynamics and right ventricular function also improve rapidly after successful balloon dilatation of the mitral valve but not to normal. We postulate that continuing abnormalities in right ventricular function during exercise and residual valvar obstruction despite balloon dilatation of the mitral valve account for the persistence of the relation between peak V_O_2 and the $VE/\dot{V}CO_2$ slope.

We conclude that patients with rheumatic mitral stenosis have a similar increase in the $VE/\dot{V}CO_2$ slope as patients with heart failure from other causes and that this slope is directly related to exercise capacity. Successful balloon valvotomy is associated with an acute reduction in exercise $VE/\dot{V}CO_2$ slope and this may reflect increased ventilation/perfusion matching secondary to improved exercise haemodynamics.

STUDY LIMITATIONS

Measurement of arterial partial pressure of CO_2 and exercise cardiac output are necessary to formally elucidate the mechanisms responsible for our observations. These measurements were not performed in this study as ethical approval was not available for invasive arterial monitoring.

APB is a British Heart Foundation junior research fellow.

Exercise ventilation after balloon dilatation of the mitral valve.

A. P. Banning, N. P. Lewis, J. S. Elborn and R. J. Hall

Br Heart J 1995 74: 386-389
doi: 10.1136/hrt.74.4.386

Updated information and services can be found at:
http://heart.bmj.com/content/74/4/386

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/74/6/688.2.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
before any clinical component of their course; recent recommendations that all applicants to medical school should be screened, and immunised if appropriate, have far-reaching implications and have provoked controversy.17,18

In conclusion, among invasive cardiologists in the United Kingdom there is clear scope for improvement in vaccine uptake, particularly in completion of the immunisation regimen. Screening of patients, as recommended, should also be performed. Careful practice to avoid needle stick injury should continue and immunisation should also be offered to nursing and other ancillary staff caring for patients undergoing invasive cardiac procedures.

We thank Dr J Heptonstall, Consultant Medical Microbiologist, Public Health Laboratory Service Communicable Disease Surveillance Centre, London for invaluable advice before the preparation of this report. We also thank all those who completed and returned the questionnaire.

CORRECTIONS

We regret that the incorrect volume number was given in the strap lines and at the foot of the abstracts of these papers. The correct volume number is 74.

We regret that an error appeared in the second sentence of the discussion on page 477 of this article (Br Heart J 1995;73: 475–8) which should have read, "Our average implantation rate over the 79 months (130/million population/year) compares with the United Kingdom national 1989 value of 148/million population/year."

NOTICES

The 1996 Annual General Meeting of the British Cardiac Society will take place at the Scottish Exhibition & Conference Centre, Glasgow from 7 to 9 May.

The Fourth Annual Molecular Symposium at UCL Medical School on Ischaemic Preconditioning and Adaptation to Ischaemia will take place on 12 December 1995 in London. For further information please contact Jan Wenley, Symposium Administrator, Department of Molecular Pathology, 46 Cleveland Street, London W1P 6DB (tel: +44 171 380 9343; fax: +44 171 387 3310).