Tenascin expression in endomyocardial biopsy specimens in patients with dilated cardiomyopathy: distribution along margin of fibrotic lesions

Akiko Tamura, Shozo Kusachi, Kunio Nogami, Asami Yamanishi, Yutaka Kajikawa, Satoshi Hirohata, Takao Tsui

Abstract

Objective—To examine the hypothesis that tenascin, an extracellular matrix glycoprotein, contributes to fibrotic changes in dilated cardiomyopathy.

Methods—The localisation of tenascin in biopsy specimens of the hearts obtained from eight patients with dilated cardiomyopathy was examined using staining by the avidin-biotin-peroxidase complex method.

Results—(1) Perimysium and endomyocardium. Although positive staining for tenascin was observed in the enlarged perimysium and endomyocardium in all patients, moderately intense staining was characteristically observed near the replacement fibrotic lesions. In the narrow perimysium and endomyocardium of the myocardium not containing replacement fibrotic lesions, tenascin was not present, as in the control specimens. (2) Replacement fibrotic lesions. Non-homogeneous positive staining for tenascin was detected in all replacement fibrotic lesions examined. Intense tenascin deposition was observed in the peripheral portion of the replacement fibrotic lesions. The tenascin staining observed in the small replacement fibrotic lesions was more intense than that in the large lesions.

Conclusions—Tenascin contributes to the development of the fibrotic changes seen in the dilated cardiomyopathic heart. Its characteristic location, specifically the distribution along the margin of the fibrosis, suggests that fibrotic change is a continuous process in hearts with dilated cardiomyopathy.

Keywords: glycoprotein; extracellular matrix components; polyclonal antibody, cardiac fibrosis.

Idiopathic dilated cardiomyopathy is a disorder of unknown aetiology characterised by left ventricular cavity enlargement and wall thinning, in association with reduced left ventricular wall motion. The major histopathological characteristics of dilated cardiomyopathy are cardiac fibrosis—a critical feature—and myocyte degeneration. The extracellular matrix (ECM), the major components of which are collagens, proteoglycans, and glycoproteins, plays a vital role in cardiac fibrotic changes.

Tenascin is an ECM glycoprotein which was first detected by Chiquet and Fambrough.2 The expression of tenascin, unlike that of other ECM components, is spatially and chronologically restricted. Tenascin is found in the migratory pathways during development, and its appearance in the ECM in migratory pathways correlates with the initiation of cell migration.3 In addition, tenascin appears at sites of tissue repair+; both the repair process and its development involve many molecular mechanisms. The characteristic distribution and expression of tenascin thus suggests that it may have a certain role in tissue repair, such as fibrosis following myocyte degeneration. However, its characteristics in the dilated cardiomyopathic heart have not been elucidated.

Employing the avidin-biotin-peroxidase complex (ABC) method,7 we therefore investigated the localisation of tenascin in endomyocardial biopsy specimens obtained from hearts with dilated cardiomyopathy.

Methods

PATIENTS AND MATERIAL

We performed endomyocardial biopsy in eight patients with dilated cardiomyopathy after obtaining their informed consent. Dilated cardiomyopathy was diagnosed according to the diagnostic criteria of WHO/ISFC.8 The clinical characteristics of the patients studied are summarised in table 1. Samples were obtained from the lateral wall of the left ventricle. Three to five biopsy specimens were obtained in each patient; two or three specimens stained with haematoxylin-eosin and Azan-Mallory served for conventional light microscope examination and the remaining specimens were subjected to immunohistochemical study.

Since it was impossible to obtain normal heart biopsy specimens, left ventricular specimens obtained from two necropsy cases without any heart disease served as controls.

IMMUNOHISTOCHEMISTRY

For the immunohistochemical study, we stained the frozen biopsy specimens by the avidin-biotin-peroxidase complex (ABC) method. Briefly, the primary antibody used in this study was rabbit anti-human tenasin.

The First Department of Internal Medicine, Okayama University Medical School, Okayama, Japan
A Tamura
S Kusachi
K Nogami
A Yamanishi
Y Kajikawa
S Hirohata
T Tsui
Correspondence to: Shozo Kusachi MD, The 1st Dept of Internal Medicine, Okayama University Medical School, 2-3-1, Shikata-cho, Okayama 700, Japan
Accepted for publication 8 August 1995

(Heart 1996;75:291–294)
polyclonal antibody (Chemicon) diluted 1:500 (2 µl/ml) with phosphate buffered saline (PBS) containing 1-5% normal goat serum. The sections of the specimens were incubated with the diluted primary antibody for 10 h at 4°C. The second antibody used in this study was goat anti-rabbit IgG serum (Funakoshi) diluted 1:1000 with PBS containing 1-5% normal goat serum. The sections were incubated with the second antibody for 2 h at room temperature, reacted with avidin-biotin-peroxidase complex, and finally coloured with diaminobenzidine. For cell nucleus staining, the sections were incubated with 0-1 M veronal acetate buffered 1% methyl green for 10 min.

IMMUNOHISTOCHEMICAL CONTROL PROCEDURE

The following procedures were performed: negative control staining with normal rabbit serum instead of primary rabbit antibody for each staining, and an immunosorption test using purified human tenasin antigen (Nippon Koutai Kenkyusho) to the antibody.

ANALYSIS

Since the extracellular matrix components of the heart are located in the perimysium and endomysium and in lesions where fibrosis has replaced myocyte necrosis (replacement fibrotic lesions), we analysed the localisation of tenasin in these regions. The extent of staining was graded as follows: -, no staining; +, slight but apparent; ++, moderate; and ++++, strong. Inter- and intraobserver differences were evaluated using sample photographs. All assessments were conducted by two investigators in blinded manner. When the two investigators disagreed, an additional blinded observer assessed the samples.

RESULTS

CONVENTIONAL LIGHT MICROSCOPIC FINDINGS

The conventional light microscopic findings in each of the eight patients studied are summarised in table 2. Considerable fibrosis associated with myocyte necrosis, consistent with the characteristics of the heart with dilated cardiomyopathy, was observed in all eight patients.

IMMUNOHISTOCHEMICAL STAINING RESULTS

Immunohistochemical control procedure

No positive staining was observed in negative control staining with normal rabbit serum instead of primary antibody. Positive staining in the specimen from the hearts with dilated cardiomyopathy disappeared after immunosorption. The specificity of the staining results was confirmed by these results. No positive staining was observed in the control specimen. The results of immunohistochemical staining for tenasin are summarised in table 3.

Perimysium and endomysium

Positive staining for tenasin was characteristically observed in the perimysium and endomysium (intercellular spaces) around the replacement fibrotic lesions. The staining for tenasin was detected in enlarged perimysium and endomysium in all patients except patient 1, and intense staining (grade ++ or ++++) for tenasin was observed in the enlarged endomysium near the replacement fibrotic lesions (fig 1A). Similarly, in some specimens (from patients 2 and 4) the positive staining was observed in the non-enlarged endomysium, and these tenasin positive lesions were also located near the replacement fibrotic lesions. The staining intensity in these lesions varied from lesion to lesion.

On the other hand, in the narrow perimysium and endomysium of the myocardium not containing the replacement fibrotic lesions, antibody results for tenasin confirmed that tenasin was not present, as in the control specimens.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>Patient no</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Symptoms</th>
<th>ECG</th>
<th>Echo</th>
<th>LVDd (mm)</th>
<th>EF (%)</th>
<th>LVG</th>
<th>EF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>M</td>
<td>Palpitation</td>
<td>Ventricular premature beats</td>
<td>60</td>
<td>29</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>M</td>
<td>Exertional dyspnoea</td>
<td>Poor R wave progression</td>
<td>73</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>F</td>
<td>General fatigue</td>
<td>Inverted T wave in V3-V6</td>
<td>60</td>
<td>50</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>F</td>
<td>Chest discomfort</td>
<td>Poor R wave in V1-4</td>
<td>58</td>
<td>30</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>M</td>
<td>Exertional dyspnoea</td>
<td>Right axis deviation</td>
<td>68</td>
<td>28</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>M</td>
<td>Chest discomfort</td>
<td>Ventricular premature beats</td>
<td>63</td>
<td>37</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>M</td>
<td>Exertional dyspnoea</td>
<td>Sinus bradycardia</td>
<td>59</td>
<td>46</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>M</td>
<td>Orthopnoea</td>
<td>Inverted T wave in V4-V6</td>
<td>67</td>
<td>27</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M, male; F, female; echo, echocardiography; LVG, left ventriculography; LVDd, left ventricular end diastolic dimension; EF, ejection fraction.

Table 2 Conventional light microscopic findings

<table>
<thead>
<tr>
<th>Patient</th>
<th>Myocyte degeneration</th>
<th>Myocyte hypertrophy</th>
<th>Intercellular fibrosis</th>
<th>Replacement fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>8</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

Table 3 Immunohistochemical staining results

<table>
<thead>
<tr>
<th>Patient</th>
<th>Intercellular spaces</th>
<th>Replacement fibrotic lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dilated</td>
<td>Non-dilated</td>
</tr>
<tr>
<td>1</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>++</td>
<td>--</td>
</tr>
</tbody>
</table>
Tenascin is distributed in the smaller example of The seen. The staining in replacement fibrotic lesions. These findings suggest that tenascin is present in active fibrotic lesions and plays a role in the initiation of fibrotic changes that are observed in hearts with dilated cardiomyopathy.

Tenascin was found distributed in both the enlarged perimysium and endomysium of the fibrotic lesions, which are considered to have replaced the necrotic myocytes. Tenascin is an extracellular matrix glycoprotein consisting of six disulphide linked subunits with molecular masses of 190–250 kDa. The cDNA of human tenascin has been cloned and its amino acid sequence determined. Tenascin is expressed during development by several tissues. These biological studies indicate that tenascin promotes the early phase of ECM formation, especially through cell migration. The present results for the characteristic location of tenascin in dilated cardiomyopathy indicate that tenascin contributes to the fibrotic process in the early phase of initiation of cell migration in the fibrotic lesion, containing necrosed myocytes.

A recent study showed that in the wound healing process tenascin was first detected in the stroma later than fibronectin but disappeared earlier than fibronectin. Tenascin has been reported to be abundant in healing wounds but absent in old scars; it is detected during the early phase of wound healing but is almost completely absent by the late stage. In the gastric mucosa, tenascin appears in the erosive mucosa but disappears after re-epithelisation. Tenascin, with its chemotactic and chemoattractive effects, thus plays an important role in the initial wound healing process. This evidence indicates that the abundant tenascin staining observed in the extracellular matrix of the heart reflects active turnover, and that absent or diminished tenascin staining could indicate the presence of mature fibrotic lesions. The results of recent studies of tenascin and the present results indicate that fibrotic changes occur continuously in the heart with dilated cardiomyopathy.

Tenascin is detected in fetal skin wounds earlier than in adult skin wounds and the wound healing occurs more rapidly in the fetus. Tenascin appeared before keratinocyte and fibroblast migration, and its early appearance in the fetal wounds, through its initiation of cell migration, may underlie the rapid epithelialisation seen in fetal wound healing. These studies generally indicate that fibroblasts infiltrate the lesions in which tenascin is abundant. In the biopsy specimens in the present study, staining for cell nucleus revealed that several fibroblasts were present at sites positively stained for tenascin. These results are consistent with reported findings.

In this study we could not clarify whether or not tenascin expression is specific for hearts with dilated cardiomyopathy. The tenascin expression was associated strongly with the presence of a replacement fibrotic lesion. This suggests that tenascin contributes to the fibrotic process of healing following myocyte damage. The same contribution to the healing process has been found in wound healing.
gastric mucosal injury, and liver injury. It is possible that tenascin may also be expressed in the fibrotic process following myocardial damage in other pathological conditions, such as ischaemic myocardial damage.

The small number of biopsy samples we examined is a limitation of this study, as is the failure to evaluate the relationship of tenascin staining to haemodynamic indices.

In summary, our results suggest that tenascin contributes to the fibrotic changes observed in the heart in dilated cardiomyopathy. Its variable distribution is thought to indicate that the phase of the fibrotic process differs from lesion to lesion.

Tenascin expression in endomyocardial biopsy specimens in patients with dilated cardiomyopathy: distribution along margin of fibrotic lesions.
A. Tamura, S. Kusachi, K. Nogami, A. Yamanishi, Y. Kajikawa, S. Hirohata and T. Tsuji

Heart 1996 75: 291-294
doi: 10.1136/hrt.75.3.291

Updated information and services can be found at:
http://heart.bmj.com/content/75/3/291

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/