Influence of measurement inaccuracies on determination of left ventricular mass by M mode echocardiography

Claudia Stöllberger, Igor Holländer, Leonid Dimitrov, Jörg Slany

Abstract

Objective—To determine to what extent inaccuracies in measuring the end diastolic diameter of the left ventricle, the interventricular septum, and the posterior wall, by M mode echocardiography influence the left ventricular mass calculated by the Devereux’s formula.

Design—Mathematical model.

Results—Relatively small measurement inaccuracies such as 5%, which are known to be inherent in the echocardiographic method, will result in “changes” of left ventricular mass in the range of 8% to 15%. This is equivalent to expected changes in left ventricular mass seen during treatment.

Conclusions—The use of Devereux’s formula to calculate left ventricular mass is limited by measurement inaccuracies in individual patients.

(Heart 1996;75:312–313)

Methods

For the mathematical model we assumed the correct (“true”) values of the variables EDD, SEP, and PW to be EDD\(_c\), SEP\(_c\), and PW\(_c\) respectively. The observed (inaccurate) values (EDD, SEP, and PW) are error-prone and are expressed each as a sum of the correct value plus some error quantities (d\(_{\text{EDD}}\), d\(_{\text{SEP}}\), and d\(_{\text{PW}}\)):

\[
\begin{align*}
\text{EDD} &= \text{EDD}_c + d_{\text{EDD}}, \\
\text{SEP} &= \text{SEP}_c + d_{\text{SEP}}, \\
\text{PW} &= \text{PW}_c + d_{\text{PW}}.
\end{align*}
\]

If the true LVM is calculated using the correct values, the result is:

\[
\text{LVM}_c = 1.04 \times \left(\text{EDD}_c + \text{SEP}_c + \text{PW}_c \right) - 13.6.
\]

However, by using the observed values EDD, SEP, and PW, we get

\[
\begin{align*}
\text{LVM} &= 1.04 \times \left((\text{EDD} + d_{\text{EDD}}) + (\text{SEP} + d_{\text{SEP}}) + (\text{PW} + d_{\text{PW}}) \right) - (\text{EDD}_c + d_{\text{EDD}}) - 13.6
\end{align*}
\]

instead of the correct value. To determine how strongly LVM is influenced by the individual errors of the quantities EDD, SEP, and PW entering the formula, we analysed the relation between the independent variables \(d_{\text{EDD}}\), \(d_{\text{SEP}}\), \(d_{\text{PW}}\), and the dependent variable \(d_{\text{LVM}}\) which is the difference between the true and the calculated LVM.

In the first case, we let the variable \(d_{\text{EDD}}\) be zero, and evaluated the function

\[
\begin{align*}
\text{LVM} &= 1.04 \times \left((\text{EDD} + d_{\text{SEP}} + d_{\text{PW}}) - \text{EDD}_c \right) - 13.6
\end{align*}
\]

by varying the variables \(d_{\text{SEP}}\) and \(d_{\text{PW}}\).

In the second case, we let the variable \(d_{\text{PW}}\) be zero, and evaluated the function

\[
\begin{align*}
\text{LVM} &= 1.04 \times \left((\text{EDD} + d_{\text{SEP}}) + (\text{PW} + d_{\text{PW}}) \right) - (\text{EDD}_c + d_{\text{EDD}}) - 13.6
\end{align*}
\]

by varying the variables \(d_{\text{EDD}}\) and \(d_{\text{SEP}}\).

In the third case, we let the variable \(d_{\text{SEP}}\) be zero, and evaluated the function

\[
\begin{align*}
\text{LVM} &= 1.04 \times \left((\text{EDD} + d_{\text{PW}}) + (\text{SEP} + d_{\text{PW}}) \right) - (\text{EDD}_c + d_{\text{EDD}}) - 13.6
\end{align*}
\]

by varying the variables \(d_{\text{EDD}}\) and \(d_{\text{PW}}\).

The functions are shown in figs 1 and 2. For all our graphs, we used the relative scale—that is, we expressed each error quantity as a percentage of the corresponding value for the variable.
Influence of measurement inaccu- racies on determination of left ventricular mass by M mode echocardiography

Results

Figure 1 shows the influence of SEP and PW measurement inaccuracies on LVM. An overestimation of both SEP and PW of 5% leads to a LVM change of 8%.

Figure 2 shows the influence of EDD and either SEP or PW inaccuracy. An EDD inaccuracy of 3% combined with a SEP inaccuracy of 8% leads to an LVM change of 12%. In this graph SEP can be replaced by the posterior wall thickness (PW) because both variables play equal parts in Devereux’s formula.

Discussion

Although magnetic resonance imaging has been shown to be a more reproducible tool for measuring LVM, at present echocardiography is the most commonly used method used to measure LVM.1 A “limited” echocardiogram is recommended as a cost effective technique that will assist in determining prognosis and evaluating the success or failure of antihypertensive treatment.

In this study we showed how measurement inaccuracies of SEP, PW, and EDD influence LVM. Measurement inaccuracies of EDD influence LVM more than errors of SEP or PW because EDD appears twice in Devereux’s formula. Echocardiographic measurement inaccuracies are unavoidable especially in elderly and obese subjects, a clinical situation commonly encountered in hypertensive patients. Although known for a long time,4 even the use of cross sectionally guided M mode echocardiography could not overcome this methodological problem: A recent study showed an intraobserver variability of 8.2% for SEP, 6.9% for PW and 2.3% for EDD when one investigator read 35 studies of hypertensive patients 1–2 weeks apart.6 The same authors found an interobserver variability between two observers of 9.1% for SEP, 8.7% for PW, and 3.1% for EDD.6 As our graphs show, these inaccuracies in the measurement of SEP, PW, and EDD will result in “changes” of LVM in the range of 8% to 15%. This is equivalent to changes observed during antihypertensive therapy.8

Because the calculation of LVM is already integrated into the software of the echocardiographic machine, clinicians are in danger of relying on this “measurement”. We propose that those who use LVM determined by M mode echocardiography should be aware of its susceptibility to measurement inaccuracy, especially in clinical decision making and in monitoring regression and progression of LVM in an individual patient.

We thank Dr Josef Finsterer for helpful suggestions.
