Are there any useful investigations that predict which patients with bifascicular block will develop third degree atrioventricular block?

Syncope is a common symptom, particularly in the elderly. In patients with cardiovascular disease, it is associated with a high mortality within the first year. Therefore, patients with syncope that might be of cardiac origin need thorough investigation, and, if possible, should be offered a reliable treatment. One such treatment for bradyarrhythmias is pacing. The mortality in patients with documented heart block without pacing is about 50% during the first year. Second degree heart block has a similar prognosis.

Heart block arises most often in patients with conduction tissue fibrosis, and less often in those with coronary or other heart disease. A less serious form of conduction disease is intraventricular conduction delay in the bundle branches and their various fascicles. None the less, in some cases this form of “minor” conduction disease progresses to complete heart block, often accompanied by syncope or attacks of the type described by Adams-Stokes-Morgagni. Furthermore, the association of newly acquired bifascicular block and some acute myocardial infarction is related to complete heart block (when a long HV interval is present) and to increased cardiovascular death.

There are many problems associated with bifascicular block. First, because the electrocardiogram often shows normal atrioventricular conduction after syncope we can only be certain that the syncope was caused by heart block. Nor can we predict which patients with bundle branch block (left bundle branch block or right bundle branch block with left hemiblock) will progress to complete heart block. Electrophysiological measurements are often abnormal, but seldom to the extent (in the case of the HV interval prolonged to 80-100 ms) that is associated with a high incidence of progression. Finally, even in patients with severe distal conduction disease, syncope may be caused by other, coexistent abnormalities.

Electrophysiological studies to predict the development of complete heart block
Scheinman et al proved in 1973 that His bundle recordings could be used to distinguish between those who had neurological symptoms caused by transient high grade atrioventricular (AV) block and those with other causes. However, it was soon recognised that not all patients with transient AV block had considerable HV prolongation at the time of study, so that this marker was regarded as specific but not sensitive. A prospective study of a large group of patients showed that another way of predicting the development of AV block was to record from the His bundle during atrial pacing. However, few patients (10/496) in this observational study progressed to distal AV block, and only six out of 10 patients had block during atrial pacing, making such study unrewarding in most patients.

Pharmacological stress tests
In 1978 intravenous procainamide was reported to produce high degree heart block in patients with syncope. Some groups regarded this pharmacological test as a useful method of assessing the need for pacing. Englund et al have recently used an intravenous disopyramide test as a pharmacological stress test (like procainamide, ajmaline, and flecainide) to assess the reserve of the His-Purkinje system. It is clear that the stress test has a higher sensitivity than a test in the baseline state, and this is the merit of the present study. None the less the disopyramide stress test has specific limitations. What advantages does disopyramide have over procainamide, a drug which can be used in a standardised way? Disopyramide does indeed have favourable electrophysiological characteristics, but its haemodynamic profile is not as good as Englund et al suggest. They had only one case of hypotension. Their experience seems to be better than the general experience with disopyramide, which when taken by mouth has a depressant effect on the myocardium. Like others who have studied intravenous disopyramide, Englund et al seem to have been lucky. Disopyramide can cause severe hypotension in patients with arrhythmias: some patients have to be resuscitated. It seems premature to suggest that such a test is safe and can be performed outside an electrophysiology laboratory or without a temporary pacemaker.

Should pacemakers be implanted without further study?
Some advise implantation of a permanent pacemaker without additional studies in patients with symptomatic bifascicular block, or when syncope remains unexplained. This seems reasonable, but Englund et al’s arguments for rejecting this option are valid too. The concept of a pacemaker that detects bradycardia is interesting, but bradyarrhythmias (for example, those caused by sinus node disease) may be sufficient to trigger ventricular pacing. Subsequent retrograde conduction into the AV node might cause anterograde AV block and hence reinforce the need for pacing. Therefore, we must be cautious about relying on information obtained by telemetry of pacemaker data, as was done in Englund et al’s study. Prophylactic implantation of a pacemaker in patients with bifascicular block is only appropriate if we can prove that
these patients need a pacemaker to avoid recurrent symp-
toms or sudden death. The occurrence of syncope in some
patients with a pacemaker in the series reported by
Englund et al is a striking finding.

The real causes of syncope in bifascicular block
Ventricular tachyarrhythmias are one of the leading causes
of syncope. Monitored deaths were caused by ventricular
fibrillation rather than heart block.13 Poor left ventricular
function can also be important in the pathogenesis of
syncope. Therefore, the (logical) exclusion of patients with
a left ventricular ejection fraction of less than 35% is a
major limitation of Englund et al’s study. Earlier studies
had already shown that distal conduction disease in com-
bination with congestive heart failure is an indicator of
high risk for sudden death.5 Thus if patients are studied
they should be those with poor ventricular function. A
complete study includes not only provocation of heart
block with a drug but also programmed electrical stimula-
tion of the ventricle.14 If ventricular arrhythmias are
induced, there are other treatments. I would be reluctant
to implant a pacemaker without additional protective
measures in a patient with inducible ventricular tachycar-
dia. β blockers which protect against sudden death and are
promising in congestive heart failure might be useful.
However, it is tempting to consider a transvenous pectoral
pacemaker-defibrillator for syncope and inducible ventric-
ular tachycardia.15 This will prevent sudden death caused
by both bradyarrhythmias and tachyarrhythmias, but will
not protect the patient against congestive heart failure.

Conclusions
In summary, patients with bifascicular block and syncope
require further investigation. A disopyramide test may
help to avoid unnecessary pacemaker implantations.
However, other non-invasive tests (baroreflex sensitivity,
tilt table testing) should be considered.16 When left ven-
tricular function is poor, the risk of sudden death is high. A
disopyramide or procainamide test does not seem to be
the investigation of first choice in these patients, but the
best strategy to investigate and treat these patients remains
unclear. Treatment with β blockers (or a pacemaker-
defibrillator) is worthwhile considering, even in patients
with poor left ventricular function.

LUC JORDAENS
Department of Cardiology
University Hospital Ghent,
B 9000 Ghent, Belgium

1 Kapoor WN, Karpf M, Wicand S, Peterson JR, Levey GS. A prospective
309:197-204.
2 Edhag O, Swahn A. Prognosis of patients with complete heart block or
arrhythmic syncope who were not treated with artificial pacemakers: a
457-63.
3 Shaw DB, Keckwick CA, Veale D, Gowers J, Whistance T. Survival in sec-
4 Lie KL, Wellens HJ, Schuilenburg RM, Becker AE, Durrer D. Factors
influencing prognosis of bundle branch block complicating acute antero-
5 Scheinin M, Weis A, Kankel F. His bundle recordings in patients with
bundle branch block and transient neurologic symptoms. Circulation
Prognostic value of infranodal conduction time in patients with chronic
7 Dhingra RC, Wyndham C, Bauerfeind R, Swyns D, Deedwania PC, Smith
T, et al. Significance of block distal to the His bundle induced by atrial
pacing in patients with chronic bifascicular block. Circulation 1979;60:
1455-64.
8 Josephson ME. Intraventricular conduction disturbances. In: Josephson
ME, ed. Clinical cardiac electrophysiology: technique and interpreta-
9 Englund A, Bergfeldt L, Rosenqvist M. The disopyramide stress test: a
sensitive and highly specific tool for predicting impending high-degree
atrioventricular block in patients with bifascicular block. Br Heart J
10 Lerman B, Waxman HL, Buxton AE, Josephson ME. Disopyramide: eval-
uation of electrophysiologic effects and clinical efficacy in patients with
sustained ventricular tachycardia or ventricular fibrillation. Am J Cardiol
1983;51:759-64.
11 Jordaens L, Massuit L, Germanpré E, Callens B, Adang L, Vandembogaerde
J et al. Delayed restoration of atrial function after conversion of atrial
12 Altschuler H, Fisher JD, Furman S. Significance of isolated H-V interval
prolongation in symptomatic patients without documented heart block.
13 Cohen HC, Singer DH. Bundle branch block and other forms of aberrant
intraventricular conduction: clinical aspects. In: Mandel WJ, ed. Cardiac
14 Ezi M, Lerman B, Marchinski FE, Buxton AE, Josephson ME. Electro-
physiologic evaluation of syncope in patients with bifascicular block.
15 Hammill SC, Stanton MS. Use of the implantable defibrillator. Br Heart
16 Parrell TG, Cripps TR, Malik M, Bennett ED, Wad D, Camm AJ.
Baroreflex sensitivity and electrophysiological correlates in patients after

Downloaded from http://heart.bmj.com/ on August 15, 2017 - Published by group.bmj.com
Are there any useful investigations that predict which patients with bifascicular block will develop third degree atrioventricular block?

L. Jordaens

Heart 1996 75: 542-543
doi: 10.1136/hrt.75.6.542

Updated information and services can be found at:
http://heart.bmj.com/content/75/6/542.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/