The renin-angiotensin system and the heart: beyond 2000

T Morgan, H R Brunner

The renin-angiotensin system is an important controller of the circulation, but even if completely inhibited, circulatory control still persists. It was initially thought to be a blood borne system, in which renin released from the kidneys leads to the formation of angiotensin II in plasma, which causes vasoconstriction and the release of aldosterone from the adrenal glands. Since then, a multitude of other actions and controls has been discovered.

Local production of renin and angiotensin II
In the kidney, there is a release of renin and probably angiotensin II into the interstitium. Angiotensin II may work locally, altering proximal tubule reabsorption, afferent and efferent arteriolar tone, and possibly glomerular mesangial and epithelial function. The intrarenal system operates constantly, independent of the systemic needs and often independently of the circulating angiotensin II and renin concentrations. It is important for maintenance and regulation of renal blood flow, glomerular filtration rate, glomerulotubular balance, and tubuloglomerular feedback, interacting with other locally produced and systemic hormones. The intrarenal role of the renin-angiotensin system may be of prime importance, with the release of renin into the circulation either a spillover phenomenon or a "fallback" system that works systematically in situations of hypotension or volume depletion.

Evidence for local production and action of angiotensin II has been obtained for a variety of tissues: blood vessels, heart, adrenals, and the brain, to mention the tissues most studied. Compared with the kidney, there is an important difference. The kidney releases renin into the circulation, but it is doubtful if under normal circumstances any of the other tissues studied make a significant contribution to active plasma renin. Messenger RNA for renin have been demonstrated by polymerase chain reaction (PCR) methodology, but it is unclear if in blood vessels and the heart this leads to renin synthesis. Danser and Schalekamp showed that under normal circumstances renin in the heart comes from the kidney through the plasma. Similar results probably apply to blood vessels. Thus in the heart and blood vessels, renin concentrations depend on plasma renin concentration (fig 1). The values in the different tissues are not identical and may follow a different time course, due to the presence of renin binding proteins in the membranes of these tissues. Still, the primacy of the kidney in controlling this component of the renin-angiotensin system must be recognised. Whether renin can also be produced locally by the heart in pathological situations has not been adequately established. The heart can form angiotensin I locally and convert this to angiotensin II, achieving levels two to three times higher than are present in plasma. The heart could regulate angiotensin II production by altering the amount of renin binding protein, the amount of converting enzyme, or the amount of angiotensinogen produced. Local actions depend upon the presence of relevant angiotensin receptors, which then alter the composition of the cell, leading to physiological or pathological actions. There are two receptor subtypes for angiotensin II. The role of the AT1 receptor is unknown, though it has been postulated that it may have an antihypertrophic effect. The AT2 receptor has been clearly identified and is associated with vasoconstriction, renal sodium absorption, inhibition of renin release, aldosterone release, and cell growth. Thus the balance of the AT1 and AT2 receptor subtypes would determine whether or not hypertrophy occurs. This is a proposition that needs to be tested.

Local effects of angiotensin II: the important role of multiple interacting factors
Angiotensin II produced in the heart has a number of actions (fig 1). Working through the AT1 receptor, it can cause local regulation of vascular tone and blood flow, and increases in cardiac contractility. It has been shown in vitro that it is a potent growth factor, increasing the production of a variety of proteins that are related to cardiac hypertrophy. Yamazaki et al have shown in vitro that mechanical stretch of cardiocytes activates protein kinases, which would cause translocation of the signal into the nucleus. Furthermore, the presence of an AT1 receptor blocking drug prevents in part the activation of this cascade. Angiotensin II is released in vitro from these stretched cardiocytes, though this was not found consistently. This could provide evidence for the involvement of angiotensin II as a local autocrine or paracrine system involved with cardiocyte hypertrophy. In contrast, the importance of plasma renin in vivo must be emphasised, as this will regulate the amount of cardiac renin, and thus angiotensin I production.
The RAS and the heart: beyond 2000

![Diagram of the renin-angiotensin system]

In vivo, the relative importance of the “growth” effects of angiotensin II versus its haemodynamic effects are unclear. An angiotensin infusion does cause left ventricular hypertrophy, but there is no evidence of right ventricular hypertrophy. Griffin et al. showed in rats that if the blood pressure rise was prevented by hydralazine, no left ventricular hypertrophy resulted. However, other workers found that hydralazine failed to prevent left ventricular hypertrophy and that there was activation of the mRNA of a number of systems that are associated with cardiac hypertrophy. It has been claimed that doses of angiotensin converting enzyme (ACE) inhibitors that do not lower blood pressure but inhibit cardiac ACE cause regression of left ventricular hypertrophy in the aortic coarctation model, probably by preventing breakdown of bradykinin. These results have not been confirmed in the same model and have also not been observed in other models of hypertension and cardiac hypertrophy. In a model of cardiac hypertrophy due to aortic-caval fistula, two groups showed that blockade of the renin-angiotensin system with losartan, quinapril, or lisinopril caused resolution of both right and left ventricular hypertrophy. Even here, there was a discrepancy, as enalapril did not cause resolution. This was ascribed to a lower specificity of enalapril for cardiac converting enzyme, based on a paper by Cushman et al. However, the conclusions in that paper are open to several different interpretations, as it was an acute single dose study. Also, ramipril was as ineffective as enalapril at inhibiting cardiac ACE, whereas in papers quoted above, it was claimed to be particularly effective at reducing left ventricular hypertrophy.

Angiotensin II acting locally is probably important in left ventricular hypertrophy, but the exact relation between workload, wall stress, angiotensin II, aldosterone, atrial natriuretic factor, sodium intake, nitric oxide, and a multitude of other variables needs careful study and documentation. Thus, is it possible to cause left ventricular hypertrophy in the complete absence of angiotensin II, or can other factors have similar effects? Can angiotensin II induce left ventricular hypertrophy in the complete absence of enhanced wall stress? Until these data are available, it is difficult, if not impossible, to interpret the effects of angiotensin II on protein kinases, or production of different mRNA. The effects are present but do they cause hypertrophy?

Angiotensin II exerts its major effects by binding to an AT₁ receptor and thereby probably alters the cell sodium concentration. This in turn alters cytosolic calcium and activates the protein kinase cascade, which then transduces the signal into the nucleus, activating the processes concerned with hypertrophy. It is important to recognise that it is the alteration in cell composition that mediates the effect, rather than the direct angiotensin II concentration. Thus a high angiotensin II level in the absence of receptors may have little effect, while a low angiotensin II level with increased number of high affinity receptors may have an effect. Other factors may also modulate the cellular composition. Thus a high sodium diet may cause increased cell sodium levels with alterations in cytosolic calcium kinetics; nitric acid may alter cytosolic calcium; calcium channel blocking drugs may alter cytosolic calcium. So the effect of angiotensin II in vivo cannot be considered in isolation.

The multiple interactions between angiotensin II and sodium intake are of particular relevance. High sodium intake and high angiotensin II can cause cardiac hypertrophy and vascular stiffness. Low sodium intake reduces blood pressure and cardiac hypertrophy, but at the same time angiotensin II levels rise. Thus angiotensin II is not of isolated fundamental importance, but rather it reflects the...
interaction of sodium balance and angiotensin II affecting cellular composition and triggering the cascade of events. A similar situation applies to the genesis of hypertension in the spontaneously hypertensive rat (SHR). Normalisation of blood pressure with an ACE inhibitor or an AT₁ receptor blocking drug, but not with other drugs, attenuates chronically the blood pressure rise that develops when medication is stopped."}

"Likewise, treatment of an SHR during pregnancy or of the offspring for the first six weeks of life with a low salt intake chronically attenuates the blood pressure that develops when rats return to a normal sodium diet. Both treatments improve survival. Once again, the low sodium diet would cause high angiotensin II concentrations, but under these circumstances there are no adverse effects. This emphasises the question of appropriateness of the angiotensin II concentrations in relation to the sodium balance of a person or animal. Similar interactions affecting cellular composition may also exist with atrial natriuretic factor, nitric oxide, endothelin, and other factors that can alter cell composition.

Cardiac hypertrophy, coronary atherosclerosis, and eventually cardiac death are intimately intertwined with the renin-angiotensin system either in the plasma, or more specifically, in the heart where the local effects are regulated, in part, by the plasma renin concentration. The hope is that by specific modulation of the cardiac action of the various components, we can significantly alter the rate of development, the rate of progression, and the resolution of these disease processes.

Genes of the renin-angiotensin system as markers of cardiovascular risk

A major search is on to identify genetic markers that will enable us to detect individuals at risk of hypertension or its complications, enabling us to target appropriate people to treat with lifestyle modifications or drugs at an early age. Harrell reviews the evidence related to this and emphasises the need to test hypotheses rather than just generate them. The idea is that the genomic nature of a person will predict who is at risk of developing complications and problems. This aim is too ambitious and is unlikely to be achieved, though it will contribute to understanding and knowledge of these processes. The present data provide evidence of linkage of a genetic variant to a disease process. Occasionally a direct mechanistic model has evolved and more of these may exist. However, genetic makeup is unlikely to be all important without taking into account the multiple interactions with various environmental factors. In a hunter-gatherer community there is little or no hypertension, no atherosclerosis and little cardiac hypertrophy. The genetic propensity for all these is present but is not expressed in that environment. If the environment alters, the genetic makeup may determine who will develop these problems.

If overactivation of the renin-angiotensin system in the heart is associated with adverse cardiac effects, it would appear that the critical measurement is the angiotensin II level, the AT₁ receptor level, and the resultant effect on cell composition. To examine, or know, the genotype that might control the activation or amount of converting enzyme (and thus angiotensin II) present in the heart appears more indirect than knowing the amount of angiotensin II.

We shall try to illustrate the complexity of the situation with the example of myocardial infarction (fig 2). The best “predictor” of a myocardial infarction is after it has occurred (100%). The next best predictor is probably severe coronary atherosclerosis, but this is difficult to detect, atherosclerosis, or sudden death. The next level, we have plasma cholesterol (with different predictability of various subtypes), smoking, glucose intolerance, and raised blood pressure. These interact with each other but are all less predictive than the presence of atherosclerosis. Beneath these we have a balance of humoral factors that are genetically determined but also are controlled by the environment. Beneath these again we have the proteins produced according to the genetic process, and their production may be regulated by the genomic subtype influenced by a variety of environmental factors. Finally, at the bottom, we have the normal genome or variant that controls production. It is difficult to see how a genomic variant that has some effect on cholesterol synthesis would be a better predictor than cholesterol itself, unless it has a direct potent influence by some other mechanism on a cell process associated with cardiac hypertrophy, atherosclerosis, or sudden death. This appears unlikely as the hunter-gatherer does not have these problems. Thus the association of the genomic subtype with problems may be environmentally determined and may differ across environments.

Even high up on the scale (fig 2), we have all observed patients with high cholesterol, high blood pressure, high renin, and heavy cigarette smoking who, at the age of 80, have (still) developed no problems. Thus the possibility of “beneficial” genotypes needs to be considered. There are also important interactions between the genotypes. A patient may have an ACE DD genotype which may favour conversion of angiotensin I to angiotensin II, but they might also have an AT₁ receptor gene subtype causing “less active” receptors. Thus there may be no net cellular effect. In contrast, they may have an ACE DD genotype and a variant of the AT₁ receptor gene causing more active receptors, thereby increasing the effect of both. The combination of the ACE DD genotype and the CC variant of the AT₁ receptor gene was more closely associated with myocardial infarction than either alone. The mechanism of this association is unknown.

There is little doubt that markers will be found that identify groups of people at risk, but in the individual patient they may not be as predictive as, for example, the cholesterol or its subtype levels. However, in the future there may be a greater number of such markers that can be readily determined early in life before
they are expressed as a phenotype change. A constellation of such adverse markers, and the presence or absence of beneficial markers, may enable us to predict, treat, and prevent hypertension and cardiac disease at a very early stage. However, at present, the individual associations are weak, with large overlap between affected and unaffected people.43

Blockade of the renin-angiotensin system for more effective treatment

Treatment at present is pragmatic. Blockade of the renin-angiotensin system in the circulation, and also possibly locally, has improved prognosis in cardiac failure, and after myocardial infarction.44 45 For hypertension, and possibly cardiac hypertrophy, it still remains to be proven that blockade of the renin-angiotensin system provides a better prognosis than blood pressure reduction per se. The mechanism of the improvement in cardiac failure and after myocardial infarction is obscure, and it is unclear if it is due to haemodynamic alterations, specific myocardial effects of the drugs, or—most likely—a combination of the two. The effect of ACE inhibitors may be mediated in part through the inhibition of bradykinin breakdown, leading to increased nitric oxide production and prevention of harmful effects. It is likely, from animal studies, that angiotensin II receptor blocking drugs have similar beneficial effects. An important long term therapeutic question is whether in the treatment of hypertension, the ACE inhibitors, the AT1 receptor blocking drugs, and the renin inhibitors have additional beneficial cardiovascular effects over and above those due to lowering blood pressure. Will they, if used early, prevent the development of atherosclerosis, as suggested by animal studies? Will they prevent, or cause regression of, cardiac hypertrophy better than other drugs? Finally, will they return the prognosis of the treated hypertensive patient back to that of a normotensive individual? The future holds the possibility of identifying precisely where the deficit, or excessive action, exists. The genetic approach may allow us to provide preventative treatment before phenotype expression has developed. The cardiac renin-angiotensin system may be inactivated in a variety of ways. The development of a renin inhibitor may prevent the accumulation of renin in the heart, which is important in the cascade leading to angiotensin II effects. The membrane protein that binds renin may be identified, and competitive antagonists could be developed that target this protein and thereby prevent the uptake of renin from plasma, leading to specific cardiac depletion. Converting enzyme inhibitors may be developed that are specific for cardiac ACE (though this seems unlikely). Specific angiotensin II receptor blocking drugs will enable us to separate more clearly the role of angiotensin II reduction from bradykinin excess which occurs with ACE inhibitors. The role of the
AT1 receptor and its relation to growth and hypertrophy needs to be established, but could lead to a different therapeutic approach. The above will reduce the effect of angiotensin II, but in addition, other substances and hormones that alter cellular composition need to be targeted. Thus to prevent adverse angiotensin II actions we may manipulate the cellular composition. Finally, the signal to the nucleus may be altered or interrupted, or the expression of DNA altered, in such a way that products that are beneficial will be produced by the cell rather than ones that are harmful. Cardiac cell growth and cardiocyte hypertrophy, when invoked by physiological processes, are beneficial. It is likely that properly coordinated cell growth and hypertrophy in cardiac failure, cardiac arrhythmias, and after myocardial infarction could also be beneficial. The challenge is to determine how this can be done.

Summary

Renin-angiotensin is both a circulatory and a local tissue system. However, in most circumstances, renin present in the heart and blood vessels is taken up from the plasma, and the kidney is the prime source of this renin. Tissues can then modulate and control the production of angiotensin II. In various organs, angiotensin II has local actions. In the heart, working through the AT1 receptor, it increases contractility and may cause cardio-cyte hypertrophy. Indirectly, the heart is also very much affected by the vascular actions of angiotensin II. However, the net result on the heart is the product of an important interaction between a large number of factors. There is little doubt that an inappropriately high plasma (and tissue) level of renin, related to angiotensin II, causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension 1995;12:443-8.

32. Di Nicolantonio R, Sparso S, Morgan TO. Prenatal high

35 Harrap SB. Cardiovascular disease and genetics of the renin-angiotensin system. Heart 1996;76(suppl 3):13-7 (this issue).

