Increase in hospital admission rates for heart failure in the Netherlands, 1980–1993

J B Reitsma, A Mosterd, A J M de Craen, R W Koster, F J L van Capelle, D E Grobbee, J G P Tijssen

Abstract

Objectives—To study the trend in hospital admission rates for heart failure in the Netherlands from 1980 to 1993.

Design—All hospital admissions in the Netherlands with a principal discharge diagnosis of heart failure were analysed. In addition, individual records of heart failure patients from a subset of 7 hospitals were analysed to estimate the frequency and timing of readmissions.

Results—The total number of discharges for men increased from 7377 in 1980 to 13 022 in 1993, and for women from 7064 to 12 944. From 1980 through 1993 age adjusted discharge rates rose 48% for men and 40% for women. Age adjusted in-hospital mortality for heart failure decreased from 19% in 1980 to 15% in 1993. For all age groups in-hospital mortality for men was higher than for women. The mean length of hospital admissions in 1993 was 14-0 days for men and 16-4 days for women. A review of individual patient records from a 6-3% sample of all hospital admissions in the Netherlands indicated that within a 2 year period 18% of the heart failure patients were admitted more than once and 5% more than twice.

Conclusions—For both men and women a pronounced increase in age adjusted discharge rates for heart failure was observed in the Netherlands from 1980 to 1993. Readmissions were a prominent feature among heart failure patients. Higher survival rates after acute myocardial infarction and the longer survival of patients with heart disease, including heart failure may have contributed to the observed increase. The importance of advances in diagnostic tools and of possible changes in admission policy remain uncertain.

(Heart 1996;76:388–392)

Keywords: heart failure; hospital discharges; time trends; Netherlands

Heart failure is a complex clinical syndrome representing a common and important health problem.1 In 1988 the direct medical costs of heart failure in the Netherlands were estimated at £182 million, corresponding to 1% of the total health care budget for that year.2 The prognosis of a patient with heart failure is poor. In the Framingham heart study 75% of men and 60% of women died within five years after the diagnosis of heart failure.3 Despite its importance, reliable estimates of the incidence and prevalence of heart failure in the general population are surprisingly scarce. This may be attributed to the atypical symptoms of the early stages of heart failure, the ongoing debate on the definition of heart failure, and the lack of a gold standard to assess the presence of heart failure.4 Hospital based registries provide some insight into the occurrence of heart failure in the population. Increases in age adjusted discharge rates for heart failure in the United States, Sweden, and Scotland have been reported in recent years.5–8 A recently developed model predicts a further increase in the number of heart failure patients in the Netherlands in the coming decades.9 We describe the trend in hospital admissions for heart failure in the Netherlands from 1980 to 1993. Furthermore, we assessed the frequency and timing of readmissions for heart failure during a two year period in a subset of seven hospitals.

Patients and methods

Population figures were obtained from the office of Statistics Netherlands, Voorburg, the Netherlands. The number of hospital discharges for heart failure by five year age groups were derived from the National Medical Register of SIG Health Care Information, Utrecht, the Netherlands. From 1986 onwards all hospitals (university and general) in the Netherlands participated in this register. In 1980, the starting year of our analysis, 95% of all hospital admissions in the Netherlands were recorded. Based on this coverage we used appropriate multiplying factors to estimate the yearly number of hospital discharges in the Netherlands before 1986. All records contain a principal diagnosis coded according to International Classification of Diseases Clinical Modification (9th revision),20 age and gender of the patient, status at discharge (dead or alive), and length of stay. We used the following codes to identify discharges for heart failure: heart failure (428.x), hypertensive heart disease (402.x), and myocardial degeneration (429-1). Only admissions with a first-listed (principal, main) discharge diagnosis of heart failure were included in this analysis. In-hospital mortality (as a percentage) was calculated by dividing the number of hospital admissions with a discharge status of dead by the total number of hospital admissions for heart failure.
Table 1 Number of hospital discharges for heart failure, mean length of stay, and mean age at admission in the Netherlands from 1980 through 1993

<table>
<thead>
<tr>
<th>Year</th>
<th>No of discharges</th>
<th>Mean length of stay (days)</th>
<th>Mean age at admission (yr)</th>
<th>No of discharges</th>
<th>Mean length of stay (days)</th>
<th>Mean age at admission (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>7 377</td>
<td>19-1</td>
<td>71-2</td>
<td>7 064</td>
<td>24-3</td>
<td>75-0</td>
</tr>
<tr>
<td>1981</td>
<td>7 626</td>
<td>18-9</td>
<td>71-5</td>
<td>7 382</td>
<td>22-7</td>
<td>75-3</td>
</tr>
<tr>
<td>1982</td>
<td>8 904</td>
<td>18-4</td>
<td>71-6</td>
<td>7 868</td>
<td>22-5</td>
<td>75-6</td>
</tr>
<tr>
<td>1983</td>
<td>8 917</td>
<td>17-4</td>
<td>71-8</td>
<td>8 445</td>
<td>21-5</td>
<td>75-8</td>
</tr>
<tr>
<td>1984</td>
<td>9 143</td>
<td>17-1</td>
<td>72-1</td>
<td>9 113</td>
<td>20-6</td>
<td>76-0</td>
</tr>
<tr>
<td>1985</td>
<td>9 927</td>
<td>16-6</td>
<td>72-1</td>
<td>9 501</td>
<td>19-9</td>
<td>76-4</td>
</tr>
<tr>
<td>1986</td>
<td>10 471</td>
<td>16-7</td>
<td>72-1</td>
<td>10 143</td>
<td>19-7</td>
<td>76-9</td>
</tr>
<tr>
<td>1987</td>
<td>11 085</td>
<td>16-3</td>
<td>71-9</td>
<td>10 348</td>
<td>19-0</td>
<td>76-6</td>
</tr>
<tr>
<td>1988</td>
<td>11 472</td>
<td>16-1</td>
<td>72-1</td>
<td>10 849</td>
<td>19-5</td>
<td>76-8</td>
</tr>
<tr>
<td>1989</td>
<td>11 698</td>
<td>15-4</td>
<td>72-2</td>
<td>11 308</td>
<td>18-5</td>
<td>76-9</td>
</tr>
<tr>
<td>1990</td>
<td>12 420</td>
<td>15-0</td>
<td>72-1</td>
<td>11 548</td>
<td>18-0</td>
<td>76-9</td>
</tr>
<tr>
<td>1991</td>
<td>12 522</td>
<td>14-8</td>
<td>72-2</td>
<td>12 015</td>
<td>17-5</td>
<td>76-8</td>
</tr>
<tr>
<td>1992</td>
<td>12 432</td>
<td>14-4</td>
<td>72-1</td>
<td>11 936</td>
<td>16-9</td>
<td>76-9</td>
</tr>
<tr>
<td>1993</td>
<td>13 022</td>
<td>14-0</td>
<td>72-5</td>
<td>12 944</td>
<td>16-4</td>
<td>77-4</td>
</tr>
</tbody>
</table>

Source: SIG Health Care Information.

Results

Table 1 lists the total number of discharges for heart failure, the mean length of stay, and the mean age at admission. The total number of hospital discharges for heart failure rose from 7377 in 1980 to 13 022 in 1993 for men, and from 7064 to 12 944 for women. The contribution of heart failure to the total number of hospital discharges in the Netherlands in 1993 was 1.7%. The International Classification of Disease code 428 (heart failure) was by far the most common (98.8% in 1993) of the codes we combined for this study. The average age at admission increased slightly during the study-period (table 1). On average women were 4.5 years older than men. There was a marked and steady increase in the age adjusted discharge rates for both men and women (fig 1). From 1980 to 1993 the age adjusted discharge rates for heart failure increased by 48% in men and by 40% in women. Analysis of age specific discharge rates showed that the rise in the number of discharges was more pronounced in the older age groups (figs 2 and 3). The test of trend was significant (P < 0.05) in all age groups. In every age group the risk of hospital admission was higher for men than for women.

In 1993 the average length of hospital admission for patients with heart failure was...
14-0 days for men and 16-4 days for women. The length of hospital stay declined steadily from 21-6 days in 1980 to 15-2 days in 1993. Slightly longer hospital admission times were observed with increasing age (table 2). In all age groups women stayed longer in the hospital than men, on average 1-6 days. During the study period the difference in length of stay between men and women decreased.

15-3% of all patients with a principal discharge diagnosis of heart failure in 1993 died in the hospital. In-hospital mortality was strongly age related. After stratification for age, in-hospital mortality for men was higher than for women in all age groups (fig 4). During the study period age adjusted in-hospital mortality decreased from 19-9% in 1980 to 15-5% in 1993 in men, and from 17-8% to 14-9% in women.

The survey conducted in seven hospitals for the years 1991 and 1992 yielded 3090 admissions with a first-listed discharge diagnosis of heart failure in 2440 patients. This corresponds to a 6-3% sample of all hospital admissions for heart failure in the Netherlands in that period. The inclusion of hospital admissions with a discharge diagnosis of heart failure in any position would have increased the number by 86% from 3090 to 5740. Within the two year period 18% of the patients were admitted more than once and 5% more than twice. The percentage of patients readmitted for heart failure within six months after their first discharge was 14% (95% CI 13% to 16%). Of all patients discharged (alive) after their second hospital admissions 26% (95% CI 21% to 30%) and of all patients discharged after their third hospital admissions 34% (95% CI 25% to 43%) were readmitted within six months (fig 5).

Discussion

This study shows a pronounced increase in age adjusted discharge rates for heart failure for both men and women in the Netherlands during the past 14 years. Similar increases have been reported in the United States of America, Sweden, and Scotland.1,3-8 Compared with Scotland there was a difference in the absolute rate (1990: 212/100 000 in Scotland versus 160/100 000 in the Netherlands), but time trends were very similar. From 1980 to 1990 the crude discharge rate in Scotland increased 63%, compared with 57% in the Netherlands.9 Explanations for the discrepancy in absolute rate could be differences in the age structure of the two countries, differences in admission policy, differences in the place of heart failure among the list of discharge diagnoses, and a true difference in prevalence of heart failure between the two countries.

We will discuss three possible explanations for the rise in age adjusted discharge rates for heart failure. These are an increase in the incidence of heart failure, the longer survival of heart failure patients, and changes in admission policy and coding practice.

INCREASE IN INCIDENCE OF HEART FAILURE?

Hospital statistics can not be used as a measure of incidence of heart failure per se, although an increase in incidence of heart failure in the general population should eventually be reflected in higher hospital admissions rates. For an estimate of the prevalence and incidence of heart failure in the general population other types of studies are needed.

The two main causes of heart failure in the western world are coronary heart disease and hypertension.11 Mortality from coronary heart disease in the Netherlands started to decline in the early seventies and continued to do so, as in many other Western countries.14-16 It is believed that this decline is caused by a decrease in incidence as well as by improved survival of patients with coronary heart disease.17 Data from the Framingham study suggest that one third of the decline in coronary heart mortality was caused by a decline in inci-

Table 2 Length of hospital admission (days) for heart failure in the Netherlands by age and gender in 1980, 1984, 1988, and 1993

<table>
<thead>
<tr>
<th>Year</th>
<th>Men age group in years</th>
<th>Women age group in years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 60</td>
<td>60-80</td>
</tr>
<tr>
<td>1980</td>
<td>17-8</td>
<td>19-1</td>
</tr>
<tr>
<td>1984</td>
<td>15-1</td>
<td>16-9</td>
</tr>
<tr>
<td>1988</td>
<td>15-1</td>
<td>15-9</td>
</tr>
<tr>
<td>1993</td>
<td>13-4</td>
<td>13-8</td>
</tr>
</tbody>
</table>

Source: SIG Health Care Information.
Increase in hospital admission rates for heart failure in the Netherlands, 1980-1993

dence and two thirds by a lower case fatal-
ity. If this scenario is true it will eventually
lead to an increase in the number of patients
with chronic heart disease, including heart fail-
ure. The recent, widespread use of thrombol-
ysis will probably further improve the survival
after acute myocardial infarction, but at the
same time will increase the number of patients
having an impaired cardiac reserve/left ventricu-
lar function who are therefore at a higher risk
of developing heart failure.

As in the United States there has been a
decline in prevalence of hypertension in the
Netherlands during the last decades, making
it an unlikely contributor to the suggested
increase in incidence of heart failure. How-
ever, from 1987 the percentage of people
treated for hypertension has started to decline
in the Netherlands, unlike the United States
of America where a steady increase was
observed over the past three decades.

The importance of the control of hypertension in
the prevention of heart failure remains uncer-
tain. Yusuf et al. argued that the treatment
of hypertension does not prevent heart failure, but merely postpones its onset.

LONGER SURVIVAL OF PATIENTS WITH HEART
FAILURE?

During the past decade several advances have
been made in the treatment of heart failure,
most recently the introduction of angiotensin-
converting enzyme (ACE) inhibitors. Al-
though a recent meta-analysis demonstrated
an impressive 23% reduction in mortality in
trials of ACE inhibitors in heart failure, the
gain in life expectancy is measured in months
rather than years. Furthermore, because it
takes time to translate observed benefits in
clinical trials to larger groups of heart failure
patients, ACE inhibitors are unlikely to have
had a substantial effect on survival during our
study period. The Framingham Heart Study
for example did not find an improvement in
survival after the onset of heart failure in the
period 1948-1988. Obviously, this does not
exclude that the possibility that increasing
opportunities for tailor-made treatment of
patients with severe heart failure have resulted
in an increase in hospital admissions.

CHANGES IN ADMISSION POLICY AND CODING
PRACTICE?
The number of hospital admissions is directly
influenced by changes in admission policy and
coding practice. Unfortunately, these changes
are difficult to quantify. The growing attention
focused on heart failure by physicians and the
progress in the pharmacotherapy of heart fail-
ure could have led to more patients, especially
the elderly, being admitted to hospital. In
addition, the more widespread use of echo-
diography has made confirmation of heart fail-
ure in its earlier stages easier. Given the
constraints on the health care budget it is
unlikely that those with the milder forms
of heart failure are admitted to hospital more
often. Few studies have been done to evaluate
the quality of the coding process. A recent sur-
vey in the Netherlands indicated that 80% of
the patients discharged with ICD code 428
(heart failure) fulfilled the Framingham crite-
ria for heart failure.

Heart failure is characterised by long hospital
admissions and frequent readmissions. This
adds to the importance of heart failure in
terms of costs. Despite a continuous decrease,
the average length of stay for heart failure is
still appreciably longer than for acute myocar-
dial infarction (15-2 days compared with 11-6
days in 1993).

Within a two year period 18% of the
patients were admitted more than once. The
proportion of patients that returned to the
hospital increased with every new admission
(fig 5). Our survey yielded a conservative esti-
mate of the number of readmissions in
patients with heart failure. First of all, read-
missions to a different hospital could not be
detected. Secondly, admissions before our
fixed time period (1991-1992) were not taken
into account. Therefore, admissions marked
as a first admission in our survey might really
have been readmissions.

In conclusion, age adjusted discharge rates
for heart failure in the Netherlands increased
by 48% for men and by 40% for women in
the period 1980 to 1993. Readmissions within
a short period of time are a typical feature of
heart failure patients.

In view of the expected rise in the number
of persons above the age of 65 years and the
progress in medical care a further increase in
the number of hospitalisations for heart
failure is likely. More efforts are needed to
prevent and delay the development of heart fail-
ure in high risk patients, and more research is
needed into the factors influencing the deci-
sion to (re)admit patients with heart failure to
hospital.

This work was supported by a grant from the Netherlands Heart Foundation (grant no 42.012).

For this project an advisory committee was installed by the
Netherlands Heart Foundation. We are indebted to the
members of this committee for their helpful comments during the
preparation of the paper.

2 Koopmanschap MA, van Roijen L, Bonneux L. Costs of
diseases in The Netherlands (in Dutch). Report of the
department of Public Health and Social Medicine and the
Institute for Medical Technology Assessment. Erasmus
University, Rotterdam, 1992.
D. Survival after the onset of congestive heart failure in
Framingham Heart Study subjects. Circulation 1993;88:
107-15.
4 The Task Force on Heart Failure of the European Society
of Cardiology. Guidelines for the diagnosis of heart failure.
5 Erikson H, Wilhelmsen L, Caidahl K, Svardsudd K.
Epidemiology and prognosis of heart failure. Z Kardiol
Am Heart J 1987;113:1043-5.
7 Ghali JK, Cooper R, Ford E. Trends in hospitalisation
Arch Intern Med 1990;150:769-73.
8 McMurray J, McDonagh T, Morrison CE, Dargie HJ.
Trends in hospitalisation for heart failure in Scotland
9 Bonneux L, Barendregt JJ, Meester K, Bonsel GJ, van
daar Maas F. Estimating clinical morbidity due to ischemic
heart disease and congestive heart failure: the future rise
10 International Classification of Diseases (9th Revision),
Clinical modification, 4th ed. Washington: US Depart-
ment of Health and Human Services, 1991.
11 World Health Organization. World Health Statistics

Heart 1996 76: 388-392
doi: 10.1136/hrt.76.5.388

Updated information and services can be found at:
http://heart.bmj.com/content/76/5/388

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/