Exercise capacity after His bundle ablation and rate response ventricular pacing for drug refractory chronic atrial fibrillation

Eugène M Buys, Norbert M van Hemel, Johannes C Kelder, Carl A P L Ascoop, Pascal F H M van Dessel, Lex Bakema, J Herre Kingma

Abstract
Objective—To evaluate exercise capacity of patients with chronic atrial fibrillation in whom His bundle ablation followed by ventricular rate response pacing (VVR) was carried out because of drug refractoriness.

Design—Prospective study.

Patients—25 consecutive patients, all with chronic symptomatic drug refractory atrial fibrillation, underwent His bundle ablation. Before this intervention all patients were on antiarrhythmic drugs to attain acceptable heart rate control and to relieve symptoms.

Main outcome measures—Exercise capacity, including measurements of ˙VO₂, was examined before and after a mean interval of seven months following His bundle ablation.

Results—Exercise capacity after His bundle ablation increased from a mean of 109 (SD 49) W to 118 (46) W (P < 0.002), but ˙VO₂ at peak exercise did not change significantly. Maximum exercise capacity was achieved with a significantly lower maximum driven heart rate than the spontaneous heart rate before ablation.

Conclusions—Exercise capacity of patients who underwent His bundle ablation followed by VVR pacing remained unchanged or improved during a mean follow up of seven months. Larger patient populations with longer follow up are necessary to examine determinants of improved exercise capacity.

(Heart 1997;77:238–241)

Keywords: chronic atrial fibrillation; His bundle ablation; exercise capacity; VVR pacing

Atrial fibrillation can vary from an asymptomatic disorder to one causing intolerably fast or irregular heart rates resulting in tachycardiomypathy.1 If symptoms cannot be treated satisfactorily with antiarrhythmic drugs, or if the side effects of antiarrhythmic drugs are not acceptable, His bundle ablation followed by chronic cardiac pacing is often done.2 While this procedure has been shown to relieve symptoms and improve cardiac performance,3,4 exercise capacity has been little studied. The purpose of the present prospective study was to assess the long term effects on exercise capacity, using oxygen consumption measurements to ensure maximum effort, after His bundle ablation and ventricular rate response pacing (VVR) for drug refractory chronic atrial fibrillation.

Methods

PATIENTS

This prospective study was performed between August 1993 and September 1994. Patients suffering from symptomatic or incapacitating atrial fibrillation selected for His bundle ablation were included. Exclusions were patients showing (1) angina pectoris of more than New York Heart Association (NYHA) class II (IV), (2) aortic or mitral valve stenosis or incompetence, (3) respiratory diseases interfering with normal oxygen uptake, (4) any other abnormality interfering with the capability of performing a bicycle exercise test, and (5) paroxysmal atrial fibrillation.

PROCEDURES

Exercise testing with oxygen uptake measurement was performed to ensure that patients exercised maximally. Before exercise testing both routine spirometry and measurement of haemoglobin were performed, the echocardiographic left ventricular end diastolic dimension (LVEDD) and left atrial dimension were measured using the parasternal long axis, and valve abnormalities were looked for. After His bundle ablation and pacemaker implantation a standard chest x ray was taken to determine the position of the pacing lead and to permit calculation of the cardiothoracic ratio. For each patient the Quetelet index was obtained by the formula: weight/(length)² (kg/m²).

Exercise testing with respiratory gas analysis

The study was performed using an upright bicycle ergometer. The mean heart rate during atrial fibrillation was determined by measuring the average heart rate for 15 second intervals. Following a one minute resting period on the bicycle for calibrating the gas exchange data, a continuing graded exercise test was performed, starting at 60 W. A programmable, stepwise incremental ramp of 20 W/2 min was used with on-line real time gas exchange analysis. Oxygen consumption (V02, ml/min/kg), carbon dioxide production (VCO2, ml/min/kg), and respiratory exchange ratios (RQ) were continuously measured and analysed using an automated breath by breath system (SensorMedics Horizon System 4400TC, SensorMedics Corporation, Anaheim, California, USA). Gas variables were reported
at 30 second intervals. Peak V_{O2} was defined as oxygen consumption at peak exercise calculated as the mean of the values measured during the last 30 seconds of exercise. Therefore oxygen uptake at peak exercise is referred to as peak oxygen uptake (peak V_{O2}), not to be confused with V_{O2} max, defined as the maximum oxygen uptake at any time of the exercise test. Antiarrhythmic drugs used before His bundle ablation remained unchanged in advance of the exercise test. The endpoint of the exercise test was exhaustion in terms of dyspnoea or fatigue.

Pacing treatment and follow up

After achievement of complete heart block a permanent pacemaker was implanted using a bipolar lead (Encore 093–301 Teletronics, Lane Cove, Australia) connected to a VVIR pacemaker (Teletronics META III). At discharge, lower pacing rate was set at 70 pacing impulses per minute (ppm) and upper pacing rate varied from 120–150 ppm, depending on age and assumed lifestyle. A standard check of the pacemaker function was performed one and six weeks after implantation. Subsequent follow up visits were scheduled every six months and consisted of pacemaker checks, Holter monitoring, and exercise testing.

PACEMAKER CHARACTERISTICS

The Teletronics Meta III device uses changes in minute ventilation as the sensed variable for adjusting pacing rate. The minute ventilation is derived using 1 mA current pulses lasting for 15 μs at 50 ms intervals, which are emitted between the proximal lead sensing–paging ring and the pacemaker casting. The calculated impedance signals vary with the frequency of the respiratory rate and depth of breathing, that is, tidal volume. In the rate response mode the rate adapts to the patient’s individual respiratory impedance characteristics. Changes in minute ventilation have been shown to correlate directly with changes in oxygen consumption and hence metabolic demand.

Table 1 Baseline clinical characteristics of 25 study patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>58 (11)*</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>14/11*</td>
</tr>
<tr>
<td>Duration of atrial fibrillation, months</td>
<td>79 8 (34)*</td>
</tr>
<tr>
<td>Underlying heart disease</td>
<td></td>
</tr>
<tr>
<td>Ischaemic heart disease</td>
<td>6</td>
</tr>
<tr>
<td>Mitral valve disease</td>
<td>1</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>2</td>
</tr>
<tr>
<td>Mitral valve replacement</td>
<td>1</td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>1</td>
</tr>
<tr>
<td>correction ASD (type 2)</td>
<td>1</td>
</tr>
<tr>
<td>Systemic hypertension</td>
<td>4</td>
</tr>
<tr>
<td>Lone atrial fibrillation</td>
<td>9</td>
</tr>
<tr>
<td>Echocardiographic measurements</td>
<td></td>
</tr>
<tr>
<td>Left atrial size</td>
<td>49-2 (6.7)*</td>
</tr>
<tr>
<td>Left ventricular end diastolic diameter</td>
<td>49-9 (5.6)*</td>
</tr>
<tr>
<td>Chest x ray, cardiothoracic ratio</td>
<td>49 (6)*</td>
</tr>
<tr>
<td>Quteetl index (ref: < 26)</td>
<td>25.4 (3.5)*</td>
</tr>
<tr>
<td>Forced expiratory volume (FEV.)</td>
<td>73.6 (3.8)*</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>130 (26)*</td>
</tr>
<tr>
<td>Diastolic</td>
<td>81 (5)*</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>8-1 (0-4)*</td>
</tr>
</tbody>
</table>

*Mean (SD).
The former group, mean upper rate pacing was 112 ppm and only five patients (45%) reached their programmed upper pacing limit (table 2), whereas this was the case in the latter group in 11 of 14 patients (79%). Fine tuning of the pacemaker parameters in the individual patient can result in a better exercise performance, but it is emphasised that in this study the initial pacemaker settings were not reprogrammed during follow up.

The figure shows the individual changes in exercise capacity after His bundle ablation and VVIR pacing as compared to the baseline condition. In all but one patient the exercise capacity remained stable (n = 12) or improved (n = 12). Some patients with a low baseline exercise capacity showed a marked improvement after the intervention, whereas other patients had no change at all. A logarithmic line was fitted, which models the trend of the expected improvement of exercise capacity in relation to the baseline exercise capacity.

To identify clinical characteristics possibly related to an improvement in exercise capacity a multivariate analysis of the duration of atrial fibrillation before ablation, peak VO2, the cardiothoracic ratio, and the left ventricular end diastolic diameter was performed. This showed a favourable outcome for those patients having an LVEDD larger than 55 mm (P < 0.002) but this was only observed in four patients.

Discussion

In this prospective study we examined the exercise capacity before and after His bundle ablation followed by VVIR pacing for drug refractory symptomatic chronic atrial fibrillation, using oxygen consumption as an objective tool. The results of this study show that there was a significant improvement in mean exercise capacity which was most marked in patients with the lowest exercise capacity during drug treated atrial fibrillation before the His bundle ablation (figure). Although the numbers were small, it appears that patients with echocardiographic evidence of an enlarged left ventricular end diastolic diameter (mean 61.7 mm) had a greater improvement in exercise capacity.

So far several studies have reported favourable results after His bundle ablation for atrial fibrillation in terms of cardiac performance and quality of life.26 Four studies examined changes in the echocardiographically measured ejection fraction, showing that a normal baseline ejection fraction remained unaffected after His bundle ablation, whereas a diminished baseline ejection fraction increased.14 However, in three studies the patients suffered from either chronic or paroxysmal atrial fibrillation, which interferes with the outcome of such studies (table 3).246 Several studies have shown that after His bundle ablation the echocardiographic left ventricular end diastolic diameter did not change during follow up (table 3).15611 Because improvement in quality of life and the absence of changes of the left ventricular end diastolic diameter are well established results of His bundle ablation followed by cardiac pacing, these outcomes were not investigated in the present study.

The presented results may be influenced by the behaviour of the sensor of the rate responsive pacing system, the programmed slope of the pacing rates, and the selected lower and upper pacing rates. In all patients the same pacemaker was implanted, and the initial pacemaker parameters were programmed according to age and assumed lifestyle, and were not changed during follow up. We have shown earlier, using questionnaires and exercise testing, that after the initial programming of this minute ventilation rate responsive pacemaker, requests for reprogramming during long term follow up are rare.2 Previous studies have reported that after His bundle ablation the mean maximum achieved driven heart rate during exercise varied from 99 to 125 ppm.

Table 3

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>No of pts</th>
<th>AF,b</th>
<th>Follow up (months)</th>
<th>Mean max HR after HBA (ppm)</th>
<th>LVEDD after HBA (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kay4</td>
<td>1988</td>
<td>12</td>
<td>paroxysmal + chronic</td>
<td>8</td>
<td>125</td>
<td>nr</td>
</tr>
<tr>
<td>Heinz2</td>
<td>1992</td>
<td>10</td>
<td>chronic</td>
<td>2</td>
<td>nr</td>
<td>NS*</td>
</tr>
<tr>
<td>Twidale4</td>
<td>1993</td>
<td>14</td>
<td>paroxysmal + chronic</td>
<td>5</td>
<td>99</td>
<td>nr</td>
</tr>
<tr>
<td>Brugode</td>
<td>1994</td>
<td>23</td>
<td>chronic</td>
<td>3</td>
<td>105</td>
<td>NS*</td>
</tr>
<tr>
<td>Edner4</td>
<td>1995</td>
<td>29</td>
<td>paroxysmal + chronic</td>
<td>7</td>
<td>nr</td>
<td>NS*</td>
</tr>
<tr>
<td>This study</td>
<td>1998</td>
<td>25</td>
<td>chronic</td>
<td>7</td>
<td>130</td>
<td>nr</td>
</tr>
</tbody>
</table>

AFib, atrial fibrillation; HBA, His bundle ablation; HR, heart rate; LVEDD, left ventricular end diastolic diameter; nr, not reported.

*Compared with LVEDD before His bundle ablation.
Exercise capacity after His bundle ablation and rate response ventricular pacing for drug refractory chronic atrial fibrillation

Changes of left ventricular function, and the discontinuation of antiarhythmic drug treatment, and a general improvement in wellbeing are three possible causes of improved exercise capacity. Improvement of ejection fraction has been associated with improvement of exercise capacity, but a correlation between $\dot{V}O_2$ measurement and indices of resting left ventricular function, such as ejection fraction, have not been established. In our study this value remained unchanged after His bundle ablation and VVIR pacing, and therefore it is unclear whether an improvement of left ventricular function is crucial for better exercise capacity. However, improvement in exercise capacity was associated with a significantly lower driven heart rate compared to the preablation spontaneous heart rate. This finding can be partly explained by insufficiently controlled antitroventricular conduction with antiarhythmic drugs during atrial fibrillation. In addition, a favourable effect on left ventricular function can be expected after withdrawal of antiarhythmic drug treatment, eliminating side effects of drugs and possible negative inotropic effects. One might speculate that a more impaired left ventricular function might benefit more from this withdrawal. Finally, one may assume that improved wellbeing can result in higher exercise capacity. Up to now the contribution of any of these— or other—causes to improved exercise capacity remains uncertain and needs further investigation.

CONCLUSION
This study showed that exercise capacity of patients with VVIR pacing remained unchanged or improved during a mean follow up of seven months. In our view, larger patient populations with longer follow up are necessary to define the determinants of improved exercise capacity.

We thank Mrs Jolanda Willink, Mrs Majdi Mur, and Mr Cees Roerderink for technical assistance, and Mrs Gerda van der Kuijl for preparing the manuscript.

12 Abdoussen AM, Barrié V, Aarsland T, Dickstein K. Rate response cardiac pacing using a minute ventilation sensor. PACE 1993;16:1650-5.
Exercise capacity after His bundle ablation and rate response ventricular pacing for drug refractory chronic atrial fibrillation.

E. M. Buys, N. M. van Hemel, J. C. Kelder, C. A. Ascoop, P. F. van Dessel, L. Bakema and J. H. Kingma

Heart 1997 77: 238-241
doi: 10.1136/hrt.77.3.238

Updated information and services can be found at:
http://heart.bmj.com/content/77/3/238

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Drugs: cardiovascular system (8842)
- Clinical diagnostic tests (4779)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/