Exercise capacity in chronic heart failure is related to the aetiology of heart disease

Andrew L Clark, Derek Harrington, Tuan Peng Chua, Andrew J S Coats

Abstract

Objective—To assess whether the underlying aetiology of chronic heart failure is a predictor of exercise performance.

Setting—Tertiary referral centre for cardiology.

Patients and outcome measures—Retrospective study of maximum exercise testing with metabolic gas exchange measurements in 212 patients with chronic heart failure who had undergone coronary angiography. Echocardiography and radionucleide ventriculography were used to determine indices of left ventricular function, and coronary arteriography was used to determine whether the cause of chronic heart failure was ischaemic heart disease (n = 122) or dilated cardiomyopathy (n = 90).

Results—The cardiomyopathy group was younger (mean (SD) age 58.45 (11.66) years v 61.49 (7.42); p = 0.02) but there was no difference between the groups in ejection fraction or fractional shortening. Peak oxygen consumption (V\textsubscript{O\textsubscript{2}}) was higher in the dilated group, while the slope relating carbon dioxide production and ventilation (V\textsubscript{E}/V\textsubscript{CO2} slope) was the same in both groups. Both groups achieved similar respiratory exchange ratios at peak exercise, suggesting that there was near maximum exertion. There was a relation between peak V\textsubscript{O\textsubscript{2}} and age (peak V\textsubscript{O\textsubscript{2}} = 33.9 – 0.267*age; r = 0.36; p < 0.001).

After correcting for age, the peak achieved V\textsubscript{O\textsubscript{2}} was still greater in the cardiomyopathy group than in the ischaemic group (p < 0.002).

Conclusions—Exercise performance for a given level of cardiac dysfunction appears to vary with the aetiology of heart failure. Thus the two diagnostic categories should be considered separately in relation to abnormalities of exercise physiology. The difference may in part account for the worse prognosis in ischaemic patients.

Methods

We analysed data from 212 consecutive patients from the Royal Brompton heart failure database. All patients referred to the heart failure clinic undergo symptom limited exercise testing with metabolic gas exchange testing when their clinical condition is stable. Only those patients who had undergone coronary arteriography are included in this study. Patients were diagnosed as having dilated cardiomyopathy in the presence of left ventricular dysfunction where the coronary arteries were either anatomically normal or had no coronary artery stenosis greater than 50%.

Exercise testing was undertaken using a modified Bruce protocol, with the patient connected by a one way valve to a respiratory mass spectrometer. Expired gas was analysed to derive oxygen consumption (V\textsubscript{O\textsubscript{2}}), carbon dioxide production (V\textsubscript{CO2}), and ventilation (V\textsubscript{E}). Patients were encouraged to exercise to exhaustion. Continuous 12 lead electrocardiographic monitoring was used. Patients were excluded if the test was positive or the patient had anginal chest pain on exercise.

Standard echocardiographic measurements of left ventricular function derived from the long axis parasternal window were available in 143 patients. In 166 patients, left ventricular ejection fraction had been estimated using radionucleide ventriculography.
Table 1 Comparison of dilated cardiomyopathy and ischaemic heart disease patient groups

<table>
<thead>
<tr>
<th>DCM (n=90)</th>
<th>IHD (n=122)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58.45 (11.66)</td>
<td>61.49 (7.42)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>28.2 (17.1)</td>
<td>25.7 (12.1)</td>
</tr>
<tr>
<td>Fractional shortening (%)</td>
<td>19.2 (10.2)</td>
<td>16.5 (9.8)</td>
</tr>
<tr>
<td>Peak VO₂ (ml/kg/min)</td>
<td>19.9 (7.9)</td>
<td>16.4 (5.4)</td>
</tr>
<tr>
<td>% Predicted VO₂</td>
<td>68.8 (27.2)</td>
<td>53.6 (17.2)</td>
</tr>
<tr>
<td>VE/VO₂ slope</td>
<td>34.7 (10.9)</td>
<td>37.1 (12.8)</td>
</tr>
<tr>
<td>RER at peak</td>
<td>1.19 (0.15)</td>
<td>1.15 (0.18)</td>
</tr>
</tbody>
</table>

LVEF, left ventricular ejection fraction; VO₂, oxygen consumption; VE/VO₂ slope, slope of the relation between ventilation and carbon dioxide production; RER, respiratory exchange ratio.

Predicted peak VO₂ was calculated from the formulae of Wasserman et al. which predicts peak VO₂ on the basis of gender, age, and weight. Raw data were also corrected for age by analysis of covariance using age as a covariate.

Results

The crude data are shown in table 1. The patients with dilated cardiomyopathy were younger but appeared to have the same level of cardiac impairment as estimated by left ventricular ejection fraction and fractional shortening. There was no difference between the two diagnostic groups in ejection fraction or fractional shortening. The raw data suggest that peak VO₂ was higher in the dilated cardiomyopathy group, while the slope relating VO₂ and VE was the same in both groups. Both groups achieved similar respiratory exchange ratios at peak exercise, suggesting that there was at least near maximum exertion in both groups. There was no difference between the two groups in the symptoms at peak exercise (shortness of breath in 69.6% of the ischaemic group and 64.4% of the dilated cardiomyopathy group).

Overall there was a significant relation between peak VO₂ and age (peak VO₂ = 33.9 − 0.267*age; r = 0.36; p < 0.001). The peak VO₂ expressed as a percentage of the predicted peak VO₂ was significantly greater for the dilated cardiomyopathy group. After correcting for age, the peak achieved VO₂ was still greater in the cardiomyopathy group than in the ischaemic group (p < 0.002). There was a weak relation between VE/VO₂ and age (VE/VO₂ = 20.5 + 0.26*age; r = 0.20; p = 0.004), but there was no difference between the two diagnostic categories. There was a very weak relation between peak VO₂ and both left ventricular ejection fraction (r = 0.22; p < 0.001) and fractional shortening (r = 0.27; p < 0.001). There was no interaction between measures of left ventricular function and diagnostic category.

Discussion

Previous studies designed to investigate exercise physiology in chronic heart failure have included patients with heart failure regardless of aetiology. This approach has potential problems. Patients whose heart failure is secondary to ischaemic heart disease may have widespread vascular disease, and their exercise performance may be limited by peripheral vascular factors. Even in the absence of angina or electrocardiographic changes, such patients may be stopped by myocardial ischaemia manifesting itself as breathlessness. Conversely, patients with a dilated cardiomyopathy may have a skeletal muscle myopathy as part of their illness. This is most obviously seen in genetically determined myopathies. Exercise performance in these patients may be limited by factors other than heart failure. A further complicating feature is that the chronic heart failure syndrome itself is associated with skeletal muscle abnormalities, which appear to be related to exercise capacity and may be related to progression of the syndrome.

Most prognostic studies have reported that patients with ischaemic cardiomyopathy have a worse outlook than those with a non-ischaemic aetiology, although occasional studies suggest that the reverse may be true. We have found that for a given level of cardiac dysfunction, patients with heart failure due to non-ischaemic heart disease have a higher peak VO₂ than patients with coronary artery disease. This did not appear to be associated with any difference in the ventilatory response to exercise as measured by the VE/VO₂ slope. The implication must be that in studying exercise physiology in chronic heart failure the two different groups should be treated separately.

Trial data suggest that there may be differential effects of treatment on outcome in the two aetiological groups. There are no published data on the subject, but it would seem likely that a proportion of patients with chronic heart failure have their aetiologies misclassified. The data from the present study suggest that this misclassification would dilute any effect of aetiology on prognosis. Coronary arteriography should be considered in patients with heart failure to make a definite diagnosis of the aetiology, so allowing better risk stratification and perhaps in the future allowing for different therapeutic requirements.

Limitations

This is a retrospective review of data acquired from patients referred to a tertiary referral service for patients with heart failure. There may be referral bias so that only the more limited patients with ischaemic heart disease are referred to our practice. Further, we excluded from analysis an additional 64 patients in the database: 32 patients who had not undergone angiography as they had a past history of myocardi al infarction and 22 in whom the principal symptom on exercise was chest pain or who had an electrocardiographically positive exercise test. Fourteen patients had a presumptive diagnosis of dilated cardiomyopathy on the basis of echocardiographic appearances and history but had not undergone coronary arteriography.

We have no data from this survey to enable us to say whether differences in exercise capacity are reflected in differences in outcome. It is possible that the ischaemic patients were stopping exercise due to “anginal equivalent” or ischaemic left ventricular dysfunction, however, and patients with conventionally “positive” tests were excluded. Forty-four patients had resting left bundle branch block. These
subjects may have had undetected ischaemia
during exercise. Both the dilated cardiomyopa-
thy and ischaemic heart disease groups
achieved similar respiratory exchange ratios at
peak exercise.

1 Manolio TA, Baughman KL, Rodeheffer R, Pearson TA,
Bristow JD, Michels W, et al. Prevalence and etiology of
idiopathic dilated cardiomyopathy. *Am J Cardiol*

2 Metra M, Dei Cas L, Panina G, Visiolo O. Exercise
hyperventilation in chronic congestive heart failure, and its
relation to functional capacity and hemodynamics. *Am J

3 Puri S, Baker LB, Dutka DP, Oakley CM, Hughes JMB,
Cleland JGF. Reduced alveolar-capillary membrane diffusing
capacity in chronic heart failure. *Circulation* 1995;91:
2769–74.

4 Hillis GS, Al-Mohammad A, Wood M, Jennings KP.
Changing patterns of investigation and treatment of

5 Wasserman K, Hansen JE, Sue DY, Whipp BJ. *Principles of
exercise testing and interpretation.* Philadelphia: Lea and
Febiger, 1986:73.

6 Clark AL, Poole-Wilson PA, Coats AJS. Effects of
motivation of the patient on indices of exercise capacity in

7 Cook DG, Shaper AG. Breathlessness, angina pectoris

9 Lipkin DP, Jones DA, Round JM, Poole-Wilson PA. Abnor-
malities of skeletal muscle in patients with chronic heart

10 Mancini DM, Walter G, Renhek N, Lenkinski R, McCully
KK, Mullin JL, et al. Contribution of skeletal muscle atro-
phy to exercise intolerance and altered muscle metabolism

11 Volterrani M, Clark AL, Ludman PF, Swan JW, Adamopou-
los S, Piepoli M, et al. Determinants of exercise capacity in

12 Franciosa JA, Wålen M, Ziesche S, Cohn JN. Survival in
men with severe chronic left ventricular failure due to
either coronary heart disease or idiopathic dilated cardio-

13 Kelly TK, Cremo R, Nielsen C, Shabetai R. Prediction of
outcome in late-stage cardiomyopathy. *Am Heart J*

14 Gradman A, Deedwania P, Cody R, Massie B, Packer M,
Pitt B, et al. Predictors of total mortality and sudden death in
mild to moderate heart failure. *J Am Coll Cardiol*
1989;14:564–70.

15 CIBIS investigators and committees. A randomised trial of
beta-blockade in heart failure: the Cardiac Insufficiency

16 Singh SN, Fletcher RD, Fisher SG, Singh BN, Lewis HD,
Deedwania PC, et al. Amiodarone in patients with congest-
tive heart failure and asymptomatic ventricular arrhythmia.

17 Packer M, O’Connor CM, Ghali JK, Pressler ML, Carson
PE, Belkin RN, et al. Effect of amiodarone on morbidity and
Exercise capacity in chronic heart failure is related to the aetiology of heart disease

Andrew L Clark, Derek Harrington, Tuan Peng Chua and Andrew J S Coats

Heart 1997 78: 569-571
doi: 10.1136/hrt.78.6.569

Updated information and services can be found at:
http://heart.bmj.com/content/78/6/569

These include:

References
This article cites 13 articles, 4 of which you can access for free at:
http://heart.bmj.com/content/78/6/569#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: cardiovascular system (8842)
- Clinical diagnostic tests (4779)
- Dilated cardiomyopathy (292)
- Echocardiography (2127)
- Heart failure (565)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/