The Fontan procedure: lessons from the past

The Fontan circulation was one of the “big ideas” in congenital heart disease in the 1970s. This completely novel type of circulation was at first the source of some astonishment but, gradually, understanding of its properties progressed and there is now an expanding cohort of patients followed up with stable Fontan circulations.

In 1990, on the basis of an observational study of the survival and wellbeing of 334 patients, Fontan et al came to the disappointing conclusion that even after a perfect Fontan procedure there was a gradual decline in the functional status of patients that the authors could not attribute to anything other than the Fontan circulation itself. This and other long term follow up studies have provoked a wave of negativity about Fontan-type operations that has had repercussions for patients with complex anatomy facing radical operations.

Two European papers, describe cross sectional studies of medium and long term survivors of Fontan-type operations. They both focus on the non-cardiac complications of liver dysfunction, coagulation disorders, and protein losing enteropathy rather than the time related incidences of death, arrhythmias, and surgical complications, such as pathway obstruction, addressed in several other series. We have now to respond to the consensus that at least 40% of patients, most of whom are functioning tolerably well at late follow up, have a raised concentration of one or more liver enzymes, at least 25% have a depletion of some coagulation factors, and 7% have abnormally low serum albumin.

Venous hypertension, liver dysfunction, and low albumin concentrations

Are the abnormalities of liver function and coagulation explicable by the Fontan state as we understand it? Fundamental to the operation of all Fontan-type circulations is a chronic increase of systemic venous pressure to levels that would correspond to significant right heart disease in a biventricular circulation (fig 1). The association among longstanding systemic venous hypertension, liver dysfunction, and protein losing enteropathy was familiar to cardiologists long before the Fontan operation was conceived. Chronic conditions producing a high enough venous pressure to cause insidious liver and gastrointestinal damage include constrictive pericarditis and tricuspid valve disease. The full blown clinical picture is dominated by ascites and oedema associated with hypoalbuminaemia but with a background of intestinal lymphatic dysfunction, which is usually clinically silent.

If this cluster of features represents an inevitable consequence of longstanding right atrial hypertension, it is hard to guess where our Fontan patients are along the course of its natural history. Fontan patients will be the first cohort with significant right atrial hypertension that can be followed from a clear starting date, from which actuarial data can be derived. Feldt et al estimate that 13.4% of 30 day survivors of a Fontan procedure will have biochemical evidence of protein losing enteropathy at 10 years.

ROLE OF THE GUT

The impression from clinical studies of constrictive pericarditis appearing in the 1960s is that, like Fontan patients, there was often evidence of mild derangement of synthetic or excretory liver function, but that important symptoms emerged only as the plasma albumin drifted down. Where hypoalbuminaemia and chronic venous hypertension coexisted, the well documented cause was gastrointestinal protein loss. Painstaking studies showed that 3–5% of the intravenous albumin pool might leak into the gastrointestinal tract daily (normal 0.1–1.7%). The patients’ livers managed to maintain synthesis at the upper limit of normal, ruling out major liver impairment or malnutrition as the primary cause of hypoalbuminaemia.

LYMPHATIC PHYSIOLOGY

The enormous capacity of the lymphatic system to shift transudated fluid and the role of the lymphatics in protein turnover has also been extensively investigated. Besides providing channels allowing fluid to move passively downstream along a pressure gradient, and the potential to direct fluid progradely by the provision of valves, the walls of the larger lymphatics are muscularised. The larger lymphatic vessels can pump against a pressure gradient (the acutely compressed human thoracic duct can generate a pulsatile pressure of 30 mm Hg). The lymphatic pumps appear to have Starling properties, with an ability to increase their pumping rate and stroke volume as they are distended by increasing preload or afterload. Like other pumps, this Starling mechanism reaches a physiological

---

Figure 1. Pressure relations in normal and Fontan circulations. Ao, aorta; LV, left ventricle; PA, pulmonary artery; PVR, pulmonary vascular resistance; RA, right atrium; RV, right ventricle; SVR, systemic vascular resistance.
limit of distension (transmural pressure) such that at an
outflow pressure of about 16 mm Hg pump function
cesses completely and only conduit flow occurs in the
larger lymphatic vessels. The lymphatic valves, in addition
to determining prograde flow as the vessel walls contract,
defend more peripheral and thinner walled lymphatics
from having to tolerate high intramural pressures. Con-
genital valvar incompetence (Milroy’s disease) induces
lymphangiectasia in the unguarded territory and lymphatic
dilatation may be patchy.

Thus, if the analogy between Fontan survivors and
patients with constrictive pericarditis holds up, liver
dysfunction would be mild and manifest only on laboratory
testing for most patients. Clinical difficulties arise when the
lymphatic system begins to fail, presumably due to
progressive valvar incompetence leading to lymphangiecta-
sia and hypoalbuminaemia. The patients who decompens-
ate prematurely may be “worse Fontans” in the sense of
running a particularly high venous pressure but they might
be unlucky in some other way—some women suffer
varicose indignities during their first pregnancy, others not
until their fifth. Perhaps intestinal lymphangiectasia relates
as much to individual lymphatic intestinal valvar anatomy
as to the level of venous hypertension.

Cardiac output, venous hypertension, and low
albumin levels

At a certain level of hypoalbuminaemia cardiovascular
physiology begins to fail. The level of venous pressure that
can be sustained depends largely on the plasma albumin
concentration because albumin is the molecule largely
responsible for providing the oncotic pressure that defends
circulating plasma volume as blood traverses the capillary
spaces. A rule of thumb linking the ceiling of venous pres-
sure with plasma albumin is: albumin in
g/100 ml × 5.2 = venous pressure above which pulmonary
or systemic oedema is generated.14 Thus at a plasma albu-
min of 2.5 g/100 ml, a venous pressure no higher than
13 mm Hg can be sustained. Some Fontan patients may
need a systemic venous pressure above this to maintain
cardiac output and so their cardiac output must fall in the
face of hypoalbuminaemia. This ceiling explains why the
expected relation between very high systemic venous pres-
sure and very low serum albumin is not observed.2 6

Is the Fontan situation itself a hypercoagulable
state?

Late thromboembolic events have been well documented
after the Fontan operation—Rosenthal et al estimated an
approximately constant hazard rate of 3.9 events per 100
patient-years.12 Virchow proposed three components to
thrombogenicity: changes in the vessel wall, changes in
blood flow, and changes in the coagulability of the blood.
Even in the newly engineered Fontan circuits that aim to
minimise stasis in the right heart, abnormal patterns of
blood flow are an integral part of the Fontan situation.
Recent studies also document a prevalence of protein C
deficiency of over 25% after four years, a key factor in
physiological antithrombotic pathways.2 7 As with the clot-
ting factor abnormalities observed in association with iso-
lated atrial fibrillation,15 it is not clear whether the haemo-
dynamic abnormalities are in some way a cause of the
blood abnormalities. However, the background in Fontan
patients might also be acquired protein C deficiency as
found in chronic liver disease or intestinal protein loss of
the small protein C molecule.

Do Fontan patients require anticoagulation in the
long term?

Kaulitz et al recommend regular screening of clotting
factor profiles and “strong antiocoagulation” in all Fontan
patients with a procoagulant state on paper.2 Cromme-
Dijkstra et al prefer to anticoagulate on clinical grounds if
the patient has a low cardiac output or a dilated right atrium.3 Trials in atrial fibrillation suggest that a strategy of
prescribing warfarin to every patient may not be optimal
because of the incidence of bleeding and the significant
inconvenience to patients.4 Even if formal anticoagulation
for all Fontan patients were recommended by physicians
anxious to optimise event free survival curves, Fontan ado-
lescents might not see the issues in the same light. Teen-
agers are not as risk averse as adults; many struggling to
maintain their self esteem despite their medical history and
current problems, and will resist medication that distances
them further from “normality”.5

The future of the Fontan

Should the real possibility that circulations operating with
high systemic venous pressures gradually and inevitably
decompenstate as the lymphatic system fails influence atti-
uedes to recommending the Fontan operation to patients
who are apparently suitable? These are young people for
whom no palliation can offer either the quality of life they
yearn for or a realistic chance of a normal life span. More
data comparing the exercise capacity of patients palliated
with a Fontan cavo pulmonary and with systemic to pulmonary shunts, would help decision making. However, in communicating the information we must also acknowledge the difference between a middle aged outlook, which values long life, and the inclination of adolescents to attach more value to the quality of the next
year of their lives than to long term survival.6

KATE BULL
Cardiothoracic Unit,
Great Ormond Street Hospital for Children,
London WC1N 3JH, UK

1 Fontan F, Kirklin KW, Fenard G, et al. Outcome after a “perfect” Fon-
2 Kaulitz K, Lahmer I, Bergmann F, et al. Sequelae after modified Fontan
operation: postoperative haemodynamic data and organ function. Heart
3 Cromme-Dijkstra AH, Hess J, Hähnle K, et al. Specific sequelae after Fontan
operation at mid- and long-term follow-up. J Thorac Cardiovasc Surg
lymphangiectasia, and reversible immunologic deficiency. J Pediatr
5 Davidson JD, Waldmann TA, Goodman DS, et al. Protein-losing gastroen-
recognized cause of protein-losing enteropathy, lymphocytopenia and
7 Fields RH, Drescoll DJ, Olford KJ, et al. Protein-losing enteropathy after the
9 Benot JN. Relationships between lymphatic pump flow and total lymph
10 Dalek RE, Abbott RD. Effect of increased neck vein pressure on intestinal
11 Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased
plasma protein concentration on the development of pulmonary oedema.
12 Rosenthal DN, Friedman AH, Kleinman CS, et al. Thromboembolic comp-
13 Lip GYH. Does atrial fibrillation confer a hypercoagulable state? Lancet
14 Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of anti-
thrombotic therapy in atrial fibrillation. Analysis of pooled data from five
15 Wintjes DF. Adolescents growing up chronically ill—a life-span develop-
16 Bert WM. Adolescent thinking and the quality of life. Adolescence 1983;18:
875–88.
The Fontan procedure: lessons from the past

KATE BULL

Heart 1998 79: 213-214
doi: 10.1136/hrt.79.3.213

Updated information and services can be found at:
http://heart.bmj.com/content/79/3/213

References
This article cites 14 articles, 5 of which you can access for free at:
http://heart.bmj.com/content/79/3/213#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Interventional cardiology (2933)
- Drugs: cardiovascular system (8842)
- Hypertension (3006)
- Metabolic disorders (1030)
- Congenital heart disease (762)
- Epidemiology (3752)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/