Self expandable stents for relief of venous baffle obstruction after the Mustard operation

S C Brown, B Eyskens, L Mertens, L Stockx, M Dumoulin, M Gewillig

Abstract

Objective—Obstruction of the venous pathways after Mustard repair for transposition of the great arteries is associated with an increased risk of arrhythmia and sudden death. The purpose of this study was to assess the effectiveness of the largest (tracheal 22 × 40 mm) Wallstents in treating baffle obstructions.

Design—Retrospective analysis of patients with stented venous pathways.

Subjects—Eleven patients with baffle obstruction after Mustard repair for transposition of the great arteries.

Interventions—Stenoses were dilated with an 18 or 20 mm balloon. However, recoil was noticed in 11 patients: immediately (n = 7) or on repeat angiography (n = 4). Eighteen stents were implanted (mean (SD)) 18 (3.3) years postoperatively. After dilatation a tracheal Wallstent (11.5 F) was deployed.

Main outcome measures—Relief of obstruction, haemodynamic improvement.

Results—In the inferior vena cava, 10 stents were deployed in seven baffle obstructions with an increase in diameter from 9.8 (2.4) mm to 16.5 (1.4) mm (p < 0.01) and a mean (SD) pressure gradient decrease from 5.1 (3.6) mm Hg to 1.4 (2.0) mm Hg; in the superior vena cava, eight stents were implanted increasing the diameter from 9.1 (3.7) mm to 15.6 (3.8) mm (p < 0.001) with a decrease in mean pressure gradient from 5.1 (2.7) mm Hg to 1.9 (1.5) mm Hg. No complications were experienced during implantation. No anticoagulation was prescribed. During follow up (1.7 (0.6) years; range, 0.9–2.6) no problems were noted; five patients were re-catheterised without change in measurements. There was no evidence of seal formation in any of the stents.

Conclusion—It is concluded that Wallstents are safe, easy to use, and effective in relieving baffle obstruction. Anticoagulation does not seem necessary.

(Heart 1998;79:230–233)

Keywords: Mustard procedure; venous baffle obstruction; stent

Introduction of the Mustard and Senning procedures greatly improved the survival of children with transposition of the great arteries (TGA). 1 The first Mustard operation was performed in 1963. 2 3 Late complications after this procedure are numerous 4 5; the most prominent are obstruction of the superior and inferior vena cavae (SVC, IVC), pulmonary venous obstruction, baffle leaks, tricuspid regurgitation, right ventricular dysfunction, and arrhythmias. 6 The incidence of venous pathway obstruction varies between 0% and 40%. 7 8 The reasons for baffle obstruction are manifold, but surgical technique 9 and the use of Dacron 10 11 as material for the baffle seem to be important causes. Treatment consists of surgery requiring cardiopulmonary bypass, or balloon dilatation, 12 which often results in temporary relief and the need for repeat dilatations. Recently, balloon expandable intravascular stents 13 14 have been increasingly used for the treatment of both malignant and nonmalignant obstructions of the systemic venous system. Ward et al. 15 postulated that stenting may become the procedure of choice for the relief of systemic venous and venous baffle obstruction in the paediatric population. Here we present our experience with the use of self expandable intravascular stents for systemic venous baffle obstruction in patients who had previously undergone the Mustard procedure.

Methods

PATIENTS

During the period October 1971 to September 1981, 42 of our patients with TGA had undergone a Mustard repair. Age at operation ranged from 0.3 to 9.7 years (mean (SD) 2.5 (2.1)). Of these, 29 were simple TGA and 13 complex TGA. In total there were nine (21%) early deaths. Thirty two survivors were followed up at the outpatient clinic and screened for obstruction of the venous system a mean of 19.6 (3.3) years later (range 10–24.8). There were 27 men and 15 women. Nineteen (45%) patients had obstruction of the venous baffle system and two (5%) had pulmonary venous obstruction.

All patients were evaluated by clinical assessment, chest radiography, and echocardiography. In those in whom obstruction was suspected, cardiac catheterisation was done. Obstruction was considered to be present if a patient was symptomatic or if a mean pressure difference of more than 3 mm Hg was measured between the caval vein and the venous atrium, in the presence of an angiographic narrowing of the venous pathway of more than 40%, or the presence of a dilatedazygos vein with run off.

PROCEDURE

Procedures were done under general anaesthesia. Venous access was gained from the femoral venous route in all patients. Routine
catheterisation data and measurements were obtained and pressure gradients repeated after stent implantation. Angiography was done in standard biplane positions before and after the procedure.

Standard catheters and techniques were used. Details of the technique for stent implantation have been published elsewhere.15–20 In brief, the site of obstruction was crossed and a 0.035 inch guidewire (Amplatz extra stiff) was left in situ. All obstructions were predilated with either an 18 mm or 20 mm standard balloon. The stent was then introduced and deployed.

Large (22 × 40 mm) endotracheal Wallstents (Schneider, Buläch, Switzerland) were used in all patients. The reason for choosing this particular stent was because of its large size and ease of deployment. This particular stent is a self expandable stent folded on a shaft and covered by a stiff outer sleeve. The real diameter of the mounted stent is 11.5 F gauge.

The device can be opened by withdrawal of this outer sleeve and, if not released, folded back by advancing the sleeve and can then be repositioned. The Wallstent has an inherent radial expansion force because of its construction, which allows it to open and maintain patency once released. As we gained more experience and confidence with use of this device, we placed the leading edge of the stent somewhat distal to the obstruction. This distal part of the stent was then allowed to open and the device slowly pulled into position and then released (fig 1). This was applied after some of the stents (3 VCI pathways), because of our inexperience at the initial stage, were expanded either too proximally or distally necessitating placement of a second stent. Using this technique, we could easily control positioning and avoid the stent protruding into the venous atrium.

Procedures were done under direct fluoroscopy. No form of anticoagulation was routinely given either before or after the implantation of the stents, except if arterial cannulation was done (eight patients), in which case a single dose of heparin 50 U/kg (maximum 2500 U) was given. Antibiotic prophylaxis consisted of cephalozin (50 mg/kg one hour before the procedure to a maximum of 2 g, repeated once six hours later).

FOLLOW UP

Patients were followed up 1.7 (0.6) years (range 0.9–2.6) after the procedure using the same protocol as described for the initial
Table 1 Patient and demographic data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Weight (kg)</th>
<th>Sex</th>
<th>Presurgical diagnosis</th>
<th>Surgery for baffle obstruction</th>
<th>Age at stenting</th>
<th>Stent position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.6</td>
<td>F</td>
<td>TGA + VSD</td>
<td>Once (PLE)</td>
<td>17</td>
<td>IVC, SVC</td>
</tr>
<tr>
<td>2</td>
<td>73.8</td>
<td>M</td>
<td>TGA + VSD</td>
<td>20</td>
<td></td>
<td>SVC</td>
</tr>
<tr>
<td>3</td>
<td>54.5</td>
<td>F</td>
<td>TGA</td>
<td>16</td>
<td></td>
<td>IVC, SVC</td>
</tr>
<tr>
<td>4</td>
<td>79.6</td>
<td>F</td>
<td>TGA</td>
<td>22</td>
<td></td>
<td>SVC</td>
</tr>
<tr>
<td>5</td>
<td>81.6</td>
<td>M</td>
<td>TGA</td>
<td>Once</td>
<td>21</td>
<td>SVC</td>
</tr>
<tr>
<td>6</td>
<td>43.0</td>
<td>F</td>
<td>TGA</td>
<td>Twice</td>
<td>28</td>
<td>SVC</td>
</tr>
<tr>
<td>7</td>
<td>66.9</td>
<td>M</td>
<td>TGA + PS</td>
<td>17</td>
<td></td>
<td>IVC</td>
</tr>
<tr>
<td>8</td>
<td>68.3</td>
<td>F</td>
<td>TGA</td>
<td>24</td>
<td></td>
<td>IVC</td>
</tr>
<tr>
<td>9*</td>
<td>45.7</td>
<td>F</td>
<td>TGA + VSD</td>
<td>16</td>
<td></td>
<td>IVC</td>
</tr>
<tr>
<td>10</td>
<td>77.4</td>
<td>M</td>
<td>TGA</td>
<td>25</td>
<td></td>
<td>IVC, SVC</td>
</tr>
<tr>
<td>11</td>
<td>61.0</td>
<td>F</td>
<td>TGA + VSD</td>
<td>26</td>
<td></td>
<td>IVC, SVC</td>
</tr>
</tbody>
</table>

*This patient had grade IV histologically confirmed pulmonary hypertension; a palliative Mustard operation was done.

Table 1 summarises patient characteristics and procedures, eight in SVC and 10 in the IVC. A total of 18 stents were implanted during 13 procedures, eight in SVC and 10 in the IVC. The internal diameter of the narrowest segment before and after stent implantation was measured from the cine-angiographic images and scanned into a deskscanner using a computer software package (Adobe Photoshop, Adobe Systems, USA; Medvision, Evergreen Technologies, USA). Where possible a calibrated guidewire (Lunderquist vessel measure guide, Cook) was used or otherwise measurements were compared with known standard catheter sizes. The values obtained before and after stent implantation were analysed using the paired Student’s t test. Values of p < 0.05 were considered significant. Standard statistical methods were used to derive the mean, median, and standard deviation.

Results

Treatment for the 19 patients diagnosed with obstruction of the venous pathways was as follows: three had surgery only; four underwent surgery followed by primary dilatation or stenting, or both (n = 2, residual angiographic narrowing); three only balloon angioplasty; two underwent balloon dilatation and were later stented because of residual narrowing of the baffle; and seven were stented because of immediate elastic recoil after pre-dilatation.

Wallstents were implanted in 11 patients. A total of 18 stents were implanted during 13 procedures, eight in SVC and 10 in the IVC. The protein losing enteropathy with recurrent atrial flutter (present before stenting) and pacemaker inserted subsequently for atrioventricular block. Seven wallstents were implanted in 11 patients. The mean pressure gradient decreased from 5.1 (3.6) mm Hg (range 2.0–13.0) to 1.4 (2.0) mm Hg (range 0–5.0; p < 0.05).

Complications and Follow Up

There were no complications during stent implantation. Specifically, no incidents of bleeding or perforation were experienced during implantation. In one patient a stent was deployed too close to the mitral valve after release, but pulled into position using an endomyocardial biopsy forceps. One patient with a palliative Mustard became more cyanosed after relief of obstruction; the improvement in venous return was such that after stent placement saturations decreased from 88% to 83%.

Five patients were re-catheterised a mean of 1.2 (0.8) years after stent implantation. None of the stents showed signs of peal formation, fracture or restenosis. There was no difference in mean pressure or gradient at follow up catheterisation compared with immediate post-stent values. In patient 3 a second stent was placed in the IVC because of an invagination of tissue at the venous atrium–IVC baffle junction. Patient 10 had a His bundle ablation done and pacemaker inserted subsequently for recurrent atrioventricular block (present before stenting). The protein losing enteropathy with which patient 1 presented disappeared completely and has not resurfaced during follow up.

At follow up seven patients were in NYHA class I and four in NYHA class II. One patient became pregnant and subsequently gave birth to a healthy baby girl.

Follow up investigations showed all baffles to be patent. It was interesting to note that transthoracic echocardiographic imaging showed the stents clearly after implantation (much better than the original pathways).

Discussion

Although the Mustard operation has largely been abandoned, there are still many patients who have undergone the procedure and may present with problems of venous baffle obstruction. The experience with stenting has been increasing and a number of reports in the medical literature also indicated the effectiveness of stents to relieve this type of venous obstruction. Few have however looked at this group in particular and in most only stenting of the superior caval vein was reported in patients who had undergone the Mustard operation.

Venous baffle obstruction in patients who have undergone the Mustard procedure is a serious problem; it has been identified as a risk factor for sudden death and arrhythmia. Bearing this in mind, obstruction should be actively looked for and treated. Stenting has satisfactorily relieved obstruction of both the
Self-expandable stents for relief of venous baffle obstruction after the Mustard operation

Self expandable stents for relief of venous baffle obstruction after the Mustard operation

S C Brown, B Eyskens, L Mertens, L Stockx, M Dumoulin and M Gewillig

Heart 1998 79: 230-233
doi: 10.1136/hrt.79.3.230

Updated information and services can be found at:
http://heart.bmj.com/content/79/3/230

These include:

References
This article cites 23 articles, 10 of which you can access for free at:
http://heart.bmj.com/content/79/3/230#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Drugs: cardiovascular system (8842)
- Clinical diagnostic tests (4779)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/