Significance of commissural calcification on outcome of mitral balloon valvotomy

N Sutaria, D B Northridge, T R D Shaw

Abstract

Objective—To evaluate the significance of commissural calcification, identified by transthoracic echocardiography, on the haemodynamic and symptomatic outcome of mitral balloon valvotomy.

Methods—Commissural calcification was graded from 0–4 using parasternal short axis transthoracic views. The morphology of the mitral valve was also assessed using the Massachusetts General Hospital echo score.

Setting—A tertiary cardiac centre in Scotland.

Patients—300 patients were studied, 85 retrospectively and 215 prospectively. Mean (SD) age was 59.8 (12.7) years, range 13 to 87; 30% had been judged unsuitable for surgery. Median echo score was 6.8 (3.0), range 2–16.

Main outcome measures—Immediate increase in mitral valve area and in New York Heart Association functional class 1–3 months after balloon valvotomy.

Results—On univariate and multivariate analysis, commissural calcification grade was a significant predictor of achieving a mitral valve area of > 1.50 cm\(^2\) without severe mitral reflux. Its influence was greatest in patients with an echo score ≤ 8; those with commissural calcification grade 0/1 had significantly greater improvement in valve area and symptom status than those with grade 2/3; the proportions of patients achieving a final valve area of > 1.50 cm\(^2\) were 67% and 46%, respectively (p < 0.05). In patients with an echo score of > 8, the influence of commissural calcification was smaller and not significant.

Conclusions—Commissural calcification as assessed by transthoracic echocardiography is a useful predictor of outcome in patients with otherwise “good” valves (echo score ≤ 8). Calcification of one commissure or more predicts a less than 50% probability of achieving a valve area above 1.50 cm\(^2\) and is an indication for valve replacement in those who are suitable for surgery.

(Heart 2000;8:398–402)

Keywords: mitral balloon valvotomy; commissure calcification

The introduction of percutaneous transseptal mitral balloon valvotomy by Inoue and colleagues in 1984 was an important new option for the treatment of patients with mitral stenosis. In patients judged to have a mitral valve anatomically suitable for a commissurotomy, randomised trials have shown that balloon dilatation gives haemodynamic, echocardiographic, and symptomatic results equivalent to open and closed surgical valvotomy. In addition, in older patients with pronounced mitral valve degenerative change who are very high risk candidates for surgery, percutaneous balloon valvotomy can be undertaken safely and may provide palliative symptomatic improvement.

When closed surgical valvotomy began in the 1950s, only physical signs and fluoroscopy were available to predict valve anatomy. The early surgical experience and necropsy data showed leaflet rigidity, subvalvar change, and commissural fusion to be the three components that could contribute to obstruction in rheumatic mitral stenosis. The surgeons recognised that some commissures were sclerosed by fibrosis or calcification and resisted separation. The introduction of balloon valvotomy came at a time when echocardiography was available to examine mitral valve anatomy in more detail. To help predict the result of mitral balloon valvotomy, a transthoracic echo score was devised at the Massachusetts General Hospital to make a semiquantitative assessment of some of the degenerative changes found with stenosed mitral valves. This echo score assesses four valve characteristics: leaflet thickening, subvalvar change, leaflet mobility, and valve calcification. It does not, however, include assessment of commissural morphology. We have examined the effect of commissural calcification on the haemodynamic outcome after percutaneous mitral balloon valvotomy in a group of patients, many of whom were elderly, as is now typical in western countries.

Methods

Patients

In 311 consecutive patients in whom mitral balloon valvotomy was attempted between 1986 and 1996, dilatation of the mitral valve was achieved in 300 (97%). Of these 300 patients, 235 (78%) were women and 65 (22%) were men. Mean (SD) age was 59.8 (12.7) years, range 13–87. A previous surgical valvotomy had been carried out in 23%. Twenty four per cent were in New York Heart Association (NYHA) functional class II, 50% in class III, and 26% in class IV. Atrial fibrillation was present in 215 (72%), while 82 (27%) were in sinus rhythm, and three (1%) in atrial flutter or nodal rhythm. The median echo score was 6.8 (3.0), range 2–16.

Patients were selected for percutaneous mitral balloon valvotomy if their mitral valves appeared anatomically suitable for improvement by a commissurotomy or if, regardless of
valve morphology, they had unacceptably severe symptoms on medical treatment but were high risk candidates for cardiac surgery. Of the 300 patients, 89 (30%) had been judged unsuitable for surgical treatment. There was thus a wide spectrum of degenerative mitral valve change. Patients had been referred for mitral balloon valvotomy from hospitals throughout Scotland, and 97% were born in the UK.

ECHOCARDIOGRAPHIC ASSESSMENT

Before balloon valvotomy, all patients underwent full transthoracic cross sectional echocardiography using an ATL Ultramark 9 (Bothell, Washington, USA), Hewlett-Packard Sonos 2000 (Andover, Massachusetts, USA), or Acuson 128 XP/10 ultrasound scanner (Mountain View, California, USA). The final 196 patients also had a transoesophageal study immediately before the procedure to identify left atrial thrombus.

The mitral valve was scored on the transthoracic images as described by Wilkins and colleagues and Abascal and associates. This involves semiquantitative assessment of leaflet mobility and thickening, subvalvar change, and valve calcification; each abnormality has a possible score of 0 or 1 to 4, corresponding to zero/mild to severe abnormality and giving a possible total echo score of between 2–16.

For assessment of the commissures the mitral valve was examined in the short axis parasternal view. The echo beam was scanned repeatedly through the mitral apparatus to assess commissure anatomy and to determine if any bright echoes were present across either commissure. High intensity bright echoes extending across the commissure were taken to be areas of commissural calcification. Although by strict terminology the mitral valve has only one commissure between its two leaflets,12 we have followed the common convention of considering that the mitral valve has two commissures: posteromedial and anterolateral. The extent of commissural calcification was quantified by giving each half commissure with such echoes a score of 1. Commissural calcification could therefore range from grade 0 to grade 4 (figs 1 and 2). A grade of 2 could correspond to calcification of...
Inoue balloon size was chosen on the basis of the patient’s height. The mean effective balloon dilatation area/m² body surface area was 3.41 (0.52).

We used the increase in Gorlin mitral valve area as the measure of haemodynamic improvement because echocardiographic assessment of mitral orifice by planimetry is inaccurate when there is pronounced degenerative change—as was common in our more elderly patients—and Doppler pressure half time is also inaccurate immediately after balloon valvotomy. A successful immediate haemodynamic outcome was defined as a final mitral valve area greater than 1.50 cm² without severe mitral reflux. As patients were referred from a wide geographical area, longer term follow up echocardiograms could not be obtained in all patients; follow up symptom status was obtained by clinic visit or telephone contact.

STATISTICS
Results are expressed as mean (SD). Statistical analysis between groups was by unpaired Student’s t test, the χ² test, and analysis of variance. To identify predictors of a successful haemodynamic outcome, discrete data were compared by χ² test and continuous data by Student’s two tailed t test. A stepwise logistic regression model was used to identify independent predictors of this outcome. A value of p < 0.05 was considered significant.

Results
HAEMODYNAMIC CHANGE
Before balloon dilatation in these 300 patients, the mean (SD) gradient across the mitral valve was 12.8 (5.2) mm Hg, mean cardiac output was 3.65 (1.01) l/min, and mean valve area was 0.91 (0.30) cm². After final balloon dilatation, the gradient was 5.8 (2.9) mm Hg, cardiac output 4.4 (1.60) l/min, and valve area was 1.74 (0.73) cm² (all p < 0.001). The mean increase in valve area after balloon dilatation was 0.83 (0.60) cm². A final valve area above 1.50 cm² without severe mitral reflux was obtained in 173 patients (58%).

ECHO SCORE, COMMISSURAL CALCIFICATION, AND VALVE AREA
The echo score was significantly related to severity of mitral stenosis before dilatation (table 1) but also to the increase in valve area produced by balloon dilatation. The commissure calcification grade was also significantly related to valve area before and after dilatation, but the increase in valve area did not reach significance (table 2).

The different types of degenerative mitral valve change tended to develop together. Increasing echo score, reflecting leaflet and subvalvar changes, was significantly associated with increasing commissural calcification (table 3). In patients with an echo score of ≤ 8, a smaller increase in valve area was achieved in those with commissure calcification grade 2/3 than in those with grade 0/1 (table 4). No significant difference was found in patients with an echo score of > 8.

Table 1 Relation between the mitral valve area before and after balloon dilatation and the echo score

<table>
<thead>
<tr>
<th>Echo score</th>
<th>1–4</th>
<th>5–8</th>
<th>9–12</th>
<th>13–16</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>79</td>
<td>140</td>
<td>57</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Valve area before dilatation (cm²)</td>
<td>1.10 (0.31)</td>
<td>0.89 (0.25)</td>
<td>0.79 (0.28)</td>
<td>0.63 (0.25)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Valve area after dilatation (cm²)</td>
<td>2.12 (0.92)</td>
<td>1.67 (0.55)</td>
<td>1.49 (0.57)</td>
<td>1.19 (0.53)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Increase in valve area (cm²)</td>
<td>1.01 (0.77)</td>
<td>0.77 (0.51)</td>
<td>0.70 (0.50)</td>
<td>0.56 (0.47)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Values are mean (SD). No patient had a commissure grade of 4.

Table 2 Relation between the mitral valve area before and after balloon dilatation and the commissure calcification grade

<table>
<thead>
<tr>
<th>Commissure calcification grade</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>214</td>
<td>37</td>
<td>49</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Valve area before dilatation (cm²)</td>
<td>0.97 (0.30)</td>
<td>0.83 (0.25)</td>
<td>0.74 (0.23)</td>
<td>0.72 (0.09)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Valve area after dilatation (cm²)</td>
<td>1.84 (0.74)</td>
<td>1.66 (0.78)</td>
<td>1.40 (0.49)</td>
<td>1.21 (0.42)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Increase in valve area (cm²)</td>
<td>0.87 (0.62)</td>
<td>0.83 (0.67)</td>
<td>0.66 (0.46)</td>
<td>0.49 (0.41)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Values are mean (SD). No patient had a commissure grade of 4.

Figure 3 Correlation between increase in mitral valve area after balloon dilatation and echo score.

y = -0.044x + 1.124, r = 0.22, p < 0.0001

one commissure or to calcification of half of both commissures; in 96% of such cases the calcification was localised to one commissure. During the 10 year period, echocardiographic assessment was by consensus of two observers who each performed a transthoracic echocardiogram before the procedure in the final 215 patients and retrospectively from observers who each performed a transthoracic echocardiogram before the procedure in the final 215 patients and retrospectively from blinded video recordings in the first 85.

TECHNIQUE OF BALLOON VALVOTOMY
The first 70 patients were treated by single or double cylindrical balloons based on the methods described by Lock and colleagues and Al Zaibag and colleagues, and in the subsequent 230 cases the Inoue balloon was used. We found that each technique gave the same increase in valve area.

Measurement of mitral gradient was by planimetry. Cardiac output was calculated by the Fick principle using assumed oxygen uptake. Valvular area before and after dilatation was calculated by the Gorlin equation. Calculation of valve area after dilatation used oxygen saturations from the venae cavae to avoid any influence of left to right shunting at the atrial puncture site. Mitral reflux was assessed at left ventricular angiography and graded as absent, mild, moderate, or severe.

www.heartjnl.com Setaria, Northridge, Shaw
Values are mean (SD).

The proportions of patients who had a final valve area > 1.50 cm² are included in table 4. In patients with an echo score of ≤ 8, 67% of those with commissure calcification grade 0/1 achieved this valve area, compared with only 46% of those with commissure calcification grade 2/3 (p < 0.05).

Echo score had a significant but weak correlation with increase in valve area (fig 3).

PREDICTORS OF OUTCOME
By univariate analysis, the following patient characteristics were predictive of a final valve area > 1.5 cm² without severe mitral reflux: younger age, lower commissural calcification grade, lower echo score, less fluoroscopic calcification, lower Parsonnet score (all p < 0.001), sinus rhythm, male sex, and absence of mitral reflux (all p < 0.01). Previous valvotomy, effective balloon dilation area/m² body surface area, type of balloon, left ventricular impairment, and coronary disease were not significantly related to this outcome.

On multivariate analysis, less fluoroscopic calcification, male sex, sinus rhythm, and lower commissural calcification grade (p < 0.01) were independent predictors of this outcome.

MITRAL REFLUX AFTER FINAL DILATATION
An increase in mitral reflux by two or more grades occurred in 4.1% of patients with commissure calcification grade 2/3 and in 2.8% of those with grade 0/1 (NS).

Table 3 Commissural calcification grade in each of four ranges of echo score

<table>
<thead>
<tr>
<th>Echo score</th>
<th>Commissure calcification grade</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4</td>
<td>0.13 (0.37)</td>
<td>79</td>
</tr>
<tr>
<td>5–8</td>
<td>0.50 (0.84)</td>
<td>149</td>
</tr>
<tr>
<td>9–12</td>
<td>0.61 (0.82)</td>
<td>57</td>
</tr>
<tr>
<td>13–16</td>
<td>1.33 (1.05)</td>
<td>15</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Table 4 Effect of commissural calcification on increase in mitral valve area in patients with echo score of ≤ 8 and > 8

<table>
<thead>
<tr>
<th>Commissure calcification grade</th>
<th>Increase in valve area (cm²)</th>
<th>Final valve area > 1.50 cm²</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with echo scores ≤ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>0.90 (0.64)</td>
<td>67%</td>
<td>200</td>
</tr>
<tr>
<td>2/3</td>
<td>0.67 (0.47)</td>
<td>46% (p < 0.01)</td>
<td>28</td>
</tr>
<tr>
<td>Patients with echo scores > 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>0.69 (0.51)</td>
<td>43% (p < 0.05)</td>
<td>51</td>
</tr>
<tr>
<td>2/3</td>
<td>0.62 (0.45)</td>
<td>19% (NS)</td>
<td>21</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Table 5 Symptom class before mitral balloon valvotomy and alive at 1–3 months follow up in patients with echo score ≤ 8 and > 8

<table>
<thead>
<tr>
<th>Commissure calcification grade</th>
<th>NYHA symptom class before balloon valvotomy</th>
<th>NYHA symptom class at 1–3 month follow up</th>
<th>Change in NYHA symptom class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with echo scores ≤ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>2.9 (0.7)</td>
<td>1.6 (0.8)</td>
<td>1.2 (p < 0.01)</td>
</tr>
<tr>
<td>2/3</td>
<td>3.1 (0.6)</td>
<td>2.2 (0.8)</td>
<td>0.9 (p < 0.05)</td>
</tr>
<tr>
<td></td>
<td>(NS)</td>
<td>(p < 0.01)</td>
<td>(p < 0.05)</td>
</tr>
<tr>
<td>Patients with echo scores > 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/1</td>
<td>3.4 (0.7)</td>
<td>2.2 (1.0)</td>
<td>1.2 (p < 0.01)</td>
</tr>
<tr>
<td>2/3</td>
<td>3.4 (0.7)</td>
<td>2.2 (0.7)</td>
<td>1.2 (p < 0.05)</td>
</tr>
<tr>
<td></td>
<td>(NS)</td>
<td>(NS)</td>
<td>(NS)</td>
</tr>
</tbody>
</table>

Values are mean (SD).

Discussion
Percutaneous mitral balloon valvotomy has two roles: as an alternative to open or closed surgical valvotomy in patients with a mitral valve judged suitable for commissurotomy, and as a palliative procedure in patients requiring valve replacement but considered to be very high risk surgical candidates. Our series contained many elderly patients and 30% had been judged unsuitable for surgery, so there was a wide spectrum of degenerative mitral valve change. We confirmed the relation between the Massachusetts General Hospital echo score and haemodynamic and symptomatic status before and after mitral balloon valvotomy, but the echo score was a weak predictor of increase in valve area in individual cases. In those patients with an echo score of 8 or less, who are generally held to be suitable for balloon valvotomy, we found that commissural calcification had a significant influence on both the increase in mitral valve area and the degree of symptomatic improvement. Assuming that valve replacement is necessary if there is less than a 50% probability of achieving a valve area of more than 1.50 cm² by balloon dilatation, then commissural calcification occupying the equivalent of one of the two mitral commissures would be an indication for valve replacement rather than for balloon valvotomy. In patients with a low echo score (≤ 8) and little or no commissural calcification, percutaneous balloon dilatation would be the preferred option when cardiac catheterisation facilities and transeptal puncture skills are available, in view of reduced patient discomfort, short convalescence, and equivalent outcome.2–5

Fatkin and colleagues also found that commissural echo calcification predicted commissural splitting in their group of 30 patients.25 Cannan and colleagues showed that commissural calcium was the only factor significantly affecting clinical outcome after mitral balloon valvotomy in 149 patients.26 In these smaller studies, the extent of commissural calcification was not quantified. Hernandez and colleagues noted that commissural calcium, identified by echocardiography, had been present in patients who developed severe mitral reflux at Inoue mitral balloon valvotomy.27 This could occur if resistance to commissural splitting led to leaflet tear. We found that a pronounced increase in mitral reflux was uncommon, although slightly more frequent in those with pronounced commissural calcification (4.1% vs 2.8%). It has been suggested27 that if balloon dilatation is undertaken in a patient with commissural calcification then...
smaller initial balloon size and a cautious pro-
gressive increase in balloon diameter should be
used.

In patients with an echo score of > 8, we were
not able to show a separate significant
effect of commissural calcification on increase
in valve area, although the same trend was
present. Although such mitral valves are not
ideal for a commissurotomy, percutaneous bal-
donlation may be justified if the patient is
unsuitable for surgery because of comorbidity.
Even limited haemodynamic improvement
can give sufficient symptomatic relief to
maintain independence.6 7

Mitrail valve calcification seen at fluoroscopy
was also a predictor of outcome. However,
fluoroscopy cannot accurately localise the
calcific change, and calcification can affect
outcome either through leaflet rigidity or com-
missural resistance. Echocardiography is pre-
furred to localise any mitral calcification to the
annulus, the body of the leaflets, or the
commisses. This is helpful when there is
slight calcification localised at the commissure
or, with generalised calcification, when split-
ing of commisses may give a useful palliative
result.

LIMITATIONS OF STUDY

We used transthoracic echocardiography of
the mitral valve but in some elderly patients tran-
storacic imaging is difficult and localisation of
calcification may have been imprecise. Very
bright echoes may not always correspond to
calcification but may reflect dense fibrosis.
The consensus grading of commissural calcification
involved a variety of observers over a 10 year
period.

It would be desirable to improve the
echocardiographic predictability of outcome of
mitral balloon valvotomy. The echo score is
semiquantitative and subjective. In a multicen-
tre registry study, the echo score did not show
a significant link with outcome,28 but Post and
colleagues found that on review of 87 patients
initially judged to have an echo score of ≥ 10,
18 were reclassified as having lower scores
when judged by single centre observers.29

CONCLUSIONS

When commissural calcification grade was
assessed at transthoracic echocardiography, it
was found that calcification equivalent to one
commissure was associated with less than a
50% probability of achieving a good haemody-
namic outcome. Transoesophageal examina-
tion of both commissural calcification and
fusion may lead to further improved prediction
of outcome by balloon commissurotomy, partic-
ularly in patients who are difficult to scan
transthoracically.

This study was supported by a grant from the Clinical Resource
and Audit Group (CRAG) of the Scottish Of-

www.heartjnl.com
Significance of commissural calcification on outcome of mitral balloon valvotomy

N Sutaria, D B Northridge and T R D Shaw

Heart 2000 84: 398-402
doi: 10.1136/heart.84.4.398

Updated information and services can be found at:
http://heart.bmj.com/content/84/4/398

These include:

References
This article cites 26 articles, 9 of which you can access for free at:
http://heart.bmj.com/content/84/4/398#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (4779)
- Echocardiography (2127)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/