An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia

P N Durrington, D Bhatnagar, M I Mackness, J Morgan, K Julier, M A Khan, M France

Abstract

Background—Omega-3 fatty acids, such as those present in fish oil, have been reported to prolong life in myocardial infarction survivors. These fatty acids can decrease serum triglyceride concentrations, but so far the doses used in trials examining their effects on coronary end points have had only minimal triglyceride lowering effects.

Objective—To examine the triglyceride lowering effectiveness, safety, and tolerability of Omacor, a concentrate of omega-3, long chain, polyunsaturated fatty acids from fish oil (84% of the total as opposed to an average of 35% in fish oil) over one year in patients with established coronary heart disease (CHD) and persisting hypertriglyceridaemia, despite receiving simvastatin in doses similar to those employed in the Scandinavian simvastatin survival study.

Subjects and methods—59 patients with CHD, receiving simvastatin 10–40 mg daily with serum triglycerides > 2.3 mmol/l, were randomised to receive Omacor 2 g twice a day or placebo for 24 weeks in a double blind trial. Forty six patients accepted the offer of active treatment for a further 24 weeks in an open phase of the trial.

Results—There was a sustained significant decrease in serum triglycerides by 20–30% (p < 0.005) and in very low density lipoprotein (VLDL) cholesterol by 30–40% (p < 0.005) in patients receiving active Omacor at three, six, and 12 months compared either to baseline or placebo. Omacor did not have any deleterious effect on low density or high density lipoprotein cholesterol or on biochemical and haematological safety tests. There was no adverse effect on glycaemic control in patients with diabetes, who showed a decrease in serum triglyceride, which was at least as great as in non-diabetic patients. One patient receiving placebo died of acute myocardial infarction. Three patients withdrew from the trial (two on placebo and one on active treatment). Omacor was generally well tolerated.

Conclusion—Omacor was found to be a safe and effective means of lowering serum triglycerides over one year in patients with CHD and combined hyperlipidaemia, whose triglycerides remained elevated despite simvastatin treatment.

(Heart 2001;85:544–548)

Keywords: coronary heart disease; hypertriglyceridaemia; polyunsaturated fat; statin treatment

There is strong evidence that statin treatment to decrease low density lipoprotein (LDL) cholesterol decreases mortality in patients with coronary heart disease (CHD). Frequently such patients also have hypertriglyceridaemia, which may persist after treatment with statins, and it is not known whether they could benefit from additional treatment to correct this. Omega-3 polyunsaturated fatty acids (PUFA) lower serum triglycerides and short term studies suggest that they also do so in patients receiving statins.

There are now at least three clinical trials to suggest that omega-3 PUFA in the diet or taken as a supplement decrease coronary mortality in established CHD. However, in none of these was the quantity of omega-3 PUFA received by the participants sufficient to lower serum triglycerides substantially. Clinicians may in future wish to employ omega-3 fatty acids in doses which lower serum triglycerides in patients with persisting hypertriglyceridaemia despite statin treatment. Omega-3 fatty acids in these higher doses might thus form the basis of a future clinical event trial.

The present trial set out to establish whether the effect of omega-3 fatty acids, in doses which substantially lower elevated serum triglycerides in the short term, was maintained over one year and whether there were any adverse effects resulting from their combination with simvastatin in these doses. The fatty acids in fish oil, which are active in lowering serum triglycerides, are the long chain highly polyunsaturated ones, principally eicosapentaenoate and docosahexaenoate, which comprise only around 35% of the fatty acids present in fish oil. A more concentrated preparation of omega-3 PUFA, Omacor, was used in this study, because an earlier short term trial suggested that the smaller dose of oil and the omission of the other fatty acids might avoid some unwanted effects.

Methods

Patients and trial design

Fifty nine consecutive, eligible patients (43 men) aged ≤ 75 years (mean age 55 years, range 37–75 years), all of whom had established CHD and were attending lipid clinics at
Table 1 Baseline characteristics (mean (SD)) of patients who entered the trial, randomised to receive omega-3 PUFA (Omacor) or placebo

<table>
<thead>
<tr>
<th></th>
<th>Omega-3 PUFA concentrate</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Men/women (n)</td>
<td>23/7</td>
<td>20/9</td>
</tr>
<tr>
<td>Diabetes mellitus (n)</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Simvastatin 40 mg/daily (n)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Simvastatin 20 mg/daily (n)</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Simvastatin 10 mg/daily (n)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Age (years)</td>
<td>55.2 (7.0)</td>
<td>54.8 (10.2)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28.8 (2.8)</td>
<td>28.4 (4.2)</td>
</tr>
<tr>
<td>Fasting glucose (all patients) (mmol/l)</td>
<td>6.7 (2.5)</td>
<td>6.7 (2.7)</td>
</tr>
<tr>
<td>HbA1c, (all patients) (%)</td>
<td>5.9 (1.4)</td>
<td>5.4 (1.5)</td>
</tr>
<tr>
<td>HbA1c, (diabetic patients) (%)</td>
<td>6.7 (1.9)</td>
<td>7.6 (1.3)</td>
</tr>
<tr>
<td>Plasma fibrinogen (g/l)</td>
<td>3.5 (1.2)</td>
<td>3.4 (1.4)</td>
</tr>
<tr>
<td>Serum phospholipid eicosapentaenoic acid (mg/l)</td>
<td>21.6 (14.9)</td>
<td>21.0 (12.7)</td>
</tr>
<tr>
<td>Serum phospholipid docosapentaenoic acid (mg/l)</td>
<td>72.9 (24.5)</td>
<td>75.4 (25.6)</td>
</tr>
</tbody>
</table>

LABORATORY METHODS

Cholesterol and triglycerides were measured after an overnight fast by the CHOD-PAP method and the GPO-PAP method, respectively (both supplied by Roche Diagnostics, Lewes, UK). The coefficients of variation were 1.3% for cholesterol and 2.1% for triglyceride. Serum phospholipid fatty acids were measured by gas chromatography. Plasma was used for the isolation of lipoproteins. Very low density lipoprotein (VLDL) was isolated by ultracentrifugation at 135 000 g for 24 hours at a density of 1.006 g/ml, using a Beckman L8-85M ultracentrifuge fitted with a Beckman 50.4 Ti Rotor (Beckman Instruments, Palo Alto, California, USA). Following ultracentrifugation the upper VLDL layer was removed for analysis of cholesterol concentration. LDL in the remaining (lower) layer was precipitated with heparin/Mn²⁺ and the high density lipoprotein (HDL) cholesterol concentration in the supernatant determined. The LDL cholesterol concentration was calculated as the difference in cholesterol in the post-VLDL infranatant minus HDL cholesterol. Serum Lp(a) lipoprotein concentration was determined using an IRMA (Mercodia, Uppsala, Sweden) with a coefficient of variation of 6%. Standards and controls were supplied by the manufacturer. Apolipoprotein (apo) A1 and apo B were determined by rate nephelometry on the Beckman Array (coefficient of variation 6%). Standards and controls were supplied by the manufacturer. Plasma fibrinogen was measured on an automated coagulation laboratory analyser (Instrumentation Laboratories Ltd, Warrington, UK) by a thromboplastin initiated clotting technique. Blood glucose, creatinine kinase, liver function tests, and other biochemistry were performed on the Hitachi 747 (Roche Diagnostics) and basic haematology on the Sysmex 9500 (Sysmex, Milton Keynes, UK). Glycated haemoglobin (HbA₁c) was measured by high performance liquid chromatography (HPLC) using the variant analyser (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK).

STATISTICS

Differences between placebo and control at 12, 24, and 48 weeks were sought by analysis of covariance with the baseline as covariate. The planned primary end points in this analysis for which the study was statistically powered were serum triglycerides and VLDL cholesterol. Baseline parameters were also compared with results obtained at 12, 24, and 48 weeks using the Wilcoxon signed rank test for serum triglycerides and VLDL cholesterol, and Student’s paired t test for other variables. Because this involved multiple statistical testing the level of probability considered significant was 0.025.
Results

Table 2 Serum lipoprotein lipid concentrations (mmol/l), apolipoprotein AI and B (mg/dl), Lp(a) lipoprotein (mg/dl), and blood pressure (mm Hg) in 59 patients treated with simvastatin randomised to receive omega-3 PUFA (Omacor) or placebo for 24 weeks after which 46 patients received omega-3 PUFA

<table>
<thead>
<tr>
<th>Treatment</th>
<th>None</th>
<th>Omega-3 PUFA concentrate</th>
<th>Omega-3 PUFA concentrate</th>
<th>Omega-3 PUFA concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>59</td>
<td>57</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>Serum triglycerides</td>
<td>4.6 (2.2)</td>
<td>3.3 (1.4)**</td>
<td>3.5 (1.8)**</td>
<td>3.0 (1.7)**</td>
</tr>
<tr>
<td>Serum cholesterol</td>
<td>5.6 (1.5)</td>
<td>4.9 (1.2)**</td>
<td>5.0 (1.2)*</td>
<td>4.9 (0.9)**</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>4.0 (1.0)</td>
<td>3.3 (0.9)**</td>
<td>3.0 (0.8)</td>
<td>3.2 (0.7)**</td>
</tr>
<tr>
<td>Apolipoprotein A1</td>
<td>0.7 (0.5)</td>
<td>0.6 (0.4)**</td>
<td>0.6 (0.3)</td>
<td>0.6 (0.3)</td>
</tr>
<tr>
<td>Apolipoprotein B</td>
<td>96 (31)</td>
<td>Not done</td>
<td>95 (26)</td>
<td>93 (24)</td>
</tr>
<tr>
<td>Lp(a) lipoprotein</td>
<td>10.5</td>
<td>Not done</td>
<td>16.2 (1.9–99.1)</td>
<td>15.5 (2.1–105.4)</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>129 (15)</td>
<td>Not done</td>
<td>130 (22)</td>
<td>127 (15)</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>79 (8)</td>
<td>Not done</td>
<td>78 (11)</td>
<td>79 (8)</td>
</tr>
</tbody>
</table>

Mean (SD) except Lp(a) lipoprotein, which is median (range).

Results of analysis of covariance are shown in fig 1.

Adverse events were reported by 22 patients receiving Omacor and 17 receiving placebo.

These events were mostly minor except for one patient in the placebo group who died from acute myocardial infarction, for another patient in the placebo group who withdrew because of severe heartburn, and for one patient in the active treatment group who was withdrawn because of loose motions. Another patient receiving placebo withdrew because visits proved inconvenient. Fifty five patients thus completed the double blind, placebo controlled 24 week phase of the trial. Of these 46 agreed to take active Omacor for a further 24 weeks. The five patients who had earlier received placebo and the four who had received active treatment in the double blind phase, who declined to enter the open phase, did so because of the inconvenience of frequent hospital attendances. The results presented are for all evaluable patients at 0, 12, 24, and 48 weeks. Exclusion of all patients other than the 46 present at each of these time points does not alter the conclusions. Compliance, assessed by counting returned capsules, was > 80% in all but three patients. Patients were included in the statistical analysis regardless of compliance (intention to treat analysis). Serum phospholipid eicosapentaenoate and docosahexaenoate concentrations were similar in the placebo and Omacor groups at baseline, but in patients receiving Omacor the eicosapentaenoate concentrations rose by a mean of 260% (95% confidence interval (CI) 192% to 327%) at six months and by 361% (95% CI 276% to 447%) at 12 months, and the docosahexaenoate concentrations by 54% (95% CI 38% to 70%) and 52% (95% CI 35% to 69%) at the same time points. There were no significant changes in these parameters in patients on placebo at six months (eicosapentaenoate 12% (95% CI −33% to 57%) and docosahexaenoate −6.1% (95% CI −13% to 1%)).

The patients allocated to active and placebo treatment were similar in most respects at baseline (table 1). By chance, however, the mean (SD) serum triglyceride at randomisation was 4.6 (2.2) mmol/l in those allocated to the Omacor group and 3.8 (2.2) mmol/l in those allocated to placebo. The primary end points of the trial (percentage changes in serum

www.heartjnl.com

Durrington, Bhatnagar, Mackness, et al
triglycerides and VLDL cholesterol) in the patients on active treatment were, however, significantly greater by the per protocol analysis of covariance than in those on placebo (fig 1), even after adjusting for any effect of the baseline values ($p < 0.005$). The secondary end points (concentrations of serum cholesterol, triglycerides, VLDL, and LDL cholesterol) are summarised in table 2. Serum triglyceride and VLDL cholesterol concentrations decreased significantly compared to baseline on Omacor ($p < 0.0005$ and $p < 0.005$, respectively). At no stage was there any tendency for LDL cholesterol to rise or for HDL cholesterol to decrease.

Changes in lipoprotein concentrations were unrelated to the dose of simvastatin, the mean decrease in serum triglycerides being 25% in those on 10–20 mg and 27% in those on 40 mg daily. The triglyceride, VLDL cholesterol, and serum cholesterol responses of diabetic patients to Omacor were also not significantly different from non-diabetics. Numerically they were greater, the decrease in triglyceride, for example, being 35% in the diabetic patients at the end of the double blind phase and 44% at the end of the trial. No significant change in fasting blood glucose or HbA$_1c$ occurred in either the diabetic or non-diabetic patients receiving Omacor for 48 weeks. This was also true when the combined groups and the 15 diabetic patients receiving Omacor for 24 weeks were analysed. There were no apparent differences between placebo and Omacor in the frequency of laboratory values outside the reference range (full data available on request). No significant effects were observed on apo AI or B, Lp(a) lipoprotein, fibrinogen or blood pressure.

Discussion

Omacor 2 g twice a day for 48 weeks decreased serum triglycerides by 20–30% and VLDL cholesterol by 30–40% in patients with combined hyperlipidaemia and CHD already receiving simvastatin 10–40 mg daily. The patients were similar to those in the 4S trial in which the statin produced a 30% decrease in mortality over five years. In that trial the decrease in coronary mortality was 20–30% despite statin treatment, which we now report, strongly suggests that the smaller effect in the GISSI study was caused by the lower dose of omega-3 fatty acids used. In that trial the decrease in coronary mortality was attributed to the anti-dysrhythmic properties of omega-3 fatty acids. The question thus remains whether larger doses of omega-3 fatty acids with greater triglyceride lowering potential would be even more effective in reducing clinical end points, perhaps also affecting those related to atheroma progression.

Whatever the explanation for the decreased all cause mortality with fish oil, evidence for improved survival is lacking in the case of the more commonly prescribed class of triglyceride lowering agents, the fibrates, although in the most recent trial of gemfibrozil in myocardial infarction a 31% decrease in serum triglycerides was associated with a non-significant decrease in mortality of 11%. This result is, however, of limited relevance to the potential benefits of treating patients with hypertriglyceridaemia because the mean triglyceride concentration in the participants was only 1.6 mmol/l. Furthermore the combination of fibrate with statin treatment has the potential to cause myositis, and fibrates, unlike the statins and fish oil, are contraindicated in renal impairment. Statins themselves have a triglyceride lowering effect, which, although variable,
tends to be related to the degree of LDL reduction achieved.2 Many patients with combined hyperlipidaemia with relatively greater increases in triglycerides than cholesterol thus have persistent hypertriglyceridaemia even after the introduction of statin treatment. The present study shows that Omacor can, under these circumstances and in the doses we used, safely decrease serum triglycerides by a further 20–30% and that it is well tolerated, which has not been our previous experience with whole fish oil in doses required to achieve similar triglyceride lowering. The decision was made in designing this trial not to study patients on a standardised dose of simvastatin, but on the dose to which the patient had been titrated in the clinic. This design has the advantage that the method of arriving at the dose of simvastatin mirrors clinical practice and also that it allows us to conclude that the triglyceride response to Omacor is not influenced by the dose of simvastatin.

Given the strength of the evidence for the benefit of statin treatment in myocardial infarction survivors,1–3 it is probably unethical to consider further trials of statin versus placebo in patients with established CHD. However, the present trial shows that, with minimal safety monitoring, it would be possible to conduct a trial in patients already receiving statin treatment to establish whether omega-3 PUFA in the form of Omacor in the doses used in this study will confer additional benefit over the lower doses used in GISSI.

Support for this study was gratefully received from Pronova a.s., Norway. We are grateful to Ms C Price for expertly typing the manuscript.

26 Stein EA, Lane M, Laskarzewski P. Comparisons of statins in hypertriglyceridaemia. Am J Cardiol 1998;81:68B–9B.
An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia

P N Durrington, D Bhatnagar, M I Mackness, J Morgan, K Julier, M A Khan and M France

Heart 2001 85: 544-548
doi: 10.1136/heart.85.5.544