Vasomotor effects of L- and D-arginine in stenotic atheromatous coronary plaque

D Tousoulis, G J Davies, C Tentolouris, G Goumas, C Stefanadis, P Toutouzas

Abstract
Objective—to examine the effects of exogenous L- and D-arginine on coronary stenosis vasomotion in relation to stenosis morphology.

Design—intracoronary infusions of normal saline, L- and D-arginine (50 and 150 µmol/min), and glyceryl trinitrate (250 µg bolus) were given in 24 patients with coronary artery disease and stable angina. Coronary stenoses were classified as smooth or complex (irregular borders). The diameter of the coronary stenoses and their adjacent reference segments was measured by computed quantitative angiography.

Results—During L-arginine infusion a larger proportion of complex stenoses than smooth stenoses dilated by \(\geq 10\% \) (\(p < 0.01 \)), and the magnitude of dilatation was greater at the site of complex stenoses (\(p < 0.05 \)). Irrespective of the type of morphology there was a positive correlation (\(p < 0.01 \)) between the severity of stenoses and the magnitude of vasodilatation to L-arginine. The response to glyceryl trinitrate was similar in the two groups. No significant change was found in either group in response to D-arginine.

Conclusions—in patients with coronary artery disease, coronary stenoses—particularly those of complex morphology—dilate in response to the administration of L-arginine but not D-arginine. This finding is consistent with partial deficiency of the substrate for nitric oxide synthesis, L-arginine, at the site of complex stenoses.

Keywords: endothelium; coronary artery disease; L-arginine, vasomotor tone

Studies in humans have shown that vascular endothelium plays an important role in the regulation of blood flow by releasing endothelium dependent relaxing factors (EDRF). Nitric oxide, a major component of EDRF, is synthesised from the amino acid L-arginine by a family of enzymes through the L-arginine–nitric oxide pathway. The production of nitric oxide may be stimulated by L-arginine administration. It has also been shown that infusion of L-arginine into the brachial artery augments endothelium dependent forearm vasodilatation and reverses the defective endothelium dependent vasodilatation associated with an increased plasma low density lipoprotein concentration or hypercholesterolaemia. L-arginine administration improves the coronary blood flow response to acetylcholine in patients with normal coronary arteries and hypercholesterolaemia, enhancing nitric oxide generation, and inhibits lesion formation after balloon angioplasty. A recent study showed vasodilatation of coronary stenoses with intracoronary L-arginine, and another demonstrated that arginine produced non-stereospecific peripheral vasodilatation.

It has been shown that complex coronary artery stenoses constrict more than smooth stenoses in response to LNMMMA (N-monomethyl L-arginine), indicating enhanced basal production of nitric oxide at the site of these stenoses. It is unknown whether this production can be modified by the administration of the substrate for nitric oxide synthase. Thus, in the present study we examined the coronary vasomotor effects of L- and D-arginine in patients with coronary artery disease and correlated the responses with stenosis morphology.

Methods
Patients
We studied 24 patients (18 men, six women; mean (SD) age 59 (7) years) with chronic stable angina, coronary artery disease, and a positive treadmill exercise test result (\(\geq 0.1 \) mV ST segment depression) at between 5 and 7 METS using the modified Bruce protocol. The clinical characteristics of these patients are listed in table 1. Patients were excluded from the study if they had diabetes mellitus, recent myocardial infarction (< 6 months), or had taken any medication that could affect coronary blood flow. The study protocol was approved by the institutional review board, and all patients gave written informed consent.

Table 1 Clinical and angiographic characteristics of the patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total group</th>
<th>L-A group</th>
<th>D-A group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (mean (SD))</td>
<td>59 (7)</td>
<td>58 (7)</td>
<td>61 (6)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Previous myocardial infarct (> 6 months)</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Smoking</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Family history</td>
<td>14</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Mean plasma cholesterol (mmol/l) (mean (SEM))</td>
<td>6.53 (0.31)</td>
<td>6.42 (0.44)</td>
<td>6.84 (0.26)</td>
</tr>
<tr>
<td>Mean plasma triglyceride (mmol/l) (mean (SEM))</td>
<td>1.85 (0.16)</td>
<td>1.74 (0.19)</td>
<td>2.05 (0.25)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One vessel disease</td>
<td>14</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Two vessel disease</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Three vessel disease</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Number of lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\geq 50%) stenosis</td>
<td>16</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>< 50% stenosis</td>
<td>20</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Values are numbers of patients unless stated. L-A, L-arginine; D-A, D-arginine.
L-arginine in coronary artery disease

297

that obtained by computed symmetry analysis classification of stenosis was compared with recorded in two orthogonal projections. This basis of visual inspection of arteriograms by two blinded independent observers on the smooth (concentric or eccentric) or “complex”

mm). Distortion correction, allowed the diameters to device and this, together with the pincushion angiographic catheter was used as a scaling arteriogram were selected for analysis. The

Netherlands). Computed analysis with an automated edge contour

lysed in random order using quantitative com-

QUANTITATIVE CORONARY ANGIOGRAPHY

was emptied to avoid bolus administration of trinitrate. Before each angiogram, the catheter each infusion, and 2–3 minutes after glyceryl trast medium at baseline, immediately after angiography was performed recorded during the last 30 seconds of each infusion period. Angiography was performed after a hand injection of 6–8 ml non-ionic con-

Femoral arterial pressure and heart rate were recorded during the last 30 seconds of its administration. The protocol was approved by the research ethics committee and each patient gave written informed consent.

PROTOCOL

Following the diagnostic coronary angiogram, an optimal radiographic projection was selected and kept constant for subsequent angiograms. Two ECG leads were monitored continuously throughout the study. The following sequence of intracoronary infusions was applied in 15 patients (11 men, four women): (1) 0.9% saline (2 ml/min) for two minutes; (2) 50 µmol/min of L-arginine for eight minutes; (3) 150 µmol/min of L-arginine for eight minutes; (4) a bolus of glyceryl trinitrate (250 µg in 2 ml of saline). A syringe pump was used for continuous infusions. In nine patients (seven men, two women) with coronary artery disease, the same protocol was performed substituting 50 and 150 µmol/min of D-arginine for L-arginine.

Femoral arterial pressure and heart rate were recorded during the last 30 seconds of each infusion period. Angiography was performed after a hand injection of 6–8 ml non-ionic contrast medium at baseline, immediately after each infusion, and 2–3 minutes after glyceryl trinitrate. Before each angiogram, the catheter was emptied to avoid bolus administration of the infusate.

The arterial segments in each frame were analysed in random order using quantitative computed analysis with an automated edge contour detection analysis system (Computerised Angiographic Analysis System (CAAS); version 2V2; Pie Data Medical, Maastricht, The Netherlands).18 End diastolic frames from each arteriogram were selected for analysis. The angiographic catheter was used as a scaling device and this, together with the pincushion distortion correction, allowed the diameters to be recorded as absolute values (expressed in mm). Stenoses were morphologically classified as smooth (concentric or eccentric) or “complex” by two blinded independent observers on the basis of visual inspection of arteriograms recorded in two orthogonal projections. This classification of stenosis was compared with that obtained by computed symmetry analysis (CAAS symmetry index).19 20 Of the same coronary lesions. Concentric stenoses were defined as those producing symmetrical narrowing, with smooth borders or only very mild irregularity (symmetry index > 0.5–1) that looked similar in orthogonal projections. Eccentric stenoses were defined as asymmetrical narrowing with smooth borders and a broad neck (symmetry index 0.0–< 0.5). Complex stenoses were defined as asymmetric narrowing with irregular borders and/or overhanging edges (type II of Ambrose can colleagues)21 22 or with an “abrupt proximal face”23 or a “rough” or “sawtooth” component.22

Quantitative analysis of coronary arteriograms was carried out by two independent observers, who blindly reanalysed the films at a remote time for reproducibility of the method. No significant intraobserver or interobserver variability was found (analysis of variance F = 0.37, p = 0.8).

STADISTICAL ANALYSIS

Data are expressed as mean (SEM). Analysis of variance (ANOVA) and the Scheffé F test for repeated measures were used to compare serial changes in heart rate and blood pressure and in diameter of coronary stenoses. To test for differences in response of smooth and complex stenoses to L- and D-arginine and nitrates, a two way ANOVA for repeated measures was applied. Associations between responses to L-arginine and stenosis length, severity, and eccentricity ratio were assessed by performing linear regression analysis and calculating a correlation coefficient. Student’s t test was used to compare paired and unpaired data between groups, and the responses to glyceryl trinitrate and L- and D-arginine. A probability value of p < 0.05 (two tailed) was considered significant.

Results

The clinical and angiographic characteristics of the patients are listed in table 1. Systolic aortic pressure and heart rate remained unchanged during intracoronary administration of L-arginine (blood pressure 143.2 (5.6) v 146.2 (5.9) mm Hg; heart rate 70.1 (1.8) v 72.5 (1.8) beats/min during baseline and L-arginine, respectively), and also during intracoronary administration of D-arginine (blood pressure 146 (8) v 145 (9) mm Hg; heart rate 67.3 (2.6) v 68.1 (1.8) beats/min during baseline and D-arginine, respectively).

STENOSIS MORPHOLOGY AND RESPONSE TO L-ARGININE AND GLYCERYL TRINITRATE

Twenty two of the 26 coronary stenoses (12 smooth, 10 complicated) observed in these 15 patients were suitable for quantitative analysis, and the results below refer to these stenoses. The severity of coronary stenoses for the whole group ranged from 22.2–86% luminal diameter reduction (mean 48.2 (3)%). There were 10 stenoses of ≥ 50%; four smooth, six complex.

During L-arginine infusion a larger proportion of complex stenoses than smooth stenoses dilated by ≥ 10% (50% v 21%, p < 0.01). The magnitude of dilatation was greater (p < 0.05) at the site of complex stenoses than at the site of smooth stenoses, but was similar in their reference segments (table 2; fig 1). Irrespective of the type of morphology, there
was a positive correlation (p < 0.01) between the severity of stenoses and the magnitude of the vasomotor response to L-arginine (fig 2). A similar proportion of smooth and complex stenoses showed \(\geq 10\% \) dilatation with glyceryl trinitrate (67\% v 80\%, NS), and the magnitude of the response was similar in the two groups (table 2). In response to 150 \(\mu \)mol/min

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Stenoses</th>
<th>Reference segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth (n=12)</td>
<td>baseline 1.66 (0.08)</td>
<td>baseline 2.92 (0.16)</td>
</tr>
<tr>
<td></td>
<td>LA-50 1.76 (0.12)</td>
<td>LA-50 3.05 (0.18)</td>
</tr>
<tr>
<td></td>
<td>LA-150 1.80 (0.14)</td>
<td>LA-150 3.23 (0.23)</td>
</tr>
<tr>
<td></td>
<td>Nitrate 1.89 (0.13)</td>
<td>Nitrate 3.28 (0.20)</td>
</tr>
<tr>
<td>Complex (n=10)</td>
<td>baseline 1.32 (0.17)</td>
<td>baseline 2.84 (0.20)</td>
</tr>
<tr>
<td></td>
<td>LA-50 1.42 (0.20)</td>
<td>LA-50 3.04 (0.20)</td>
</tr>
<tr>
<td></td>
<td>LA-150 1.52 (0.20)</td>
<td>LA-150 3.10 (0.20)</td>
</tr>
<tr>
<td></td>
<td>Nitrate 1.60 (0.20)</td>
<td>Nitrate 3.23 (0.18)</td>
</tr>
<tr>
<td></td>
<td>+7.1 (3.2%)</td>
<td>+13.7 (2.5%)*</td>
</tr>
<tr>
<td></td>
<td>+14.9 (3.4%)</td>
<td>+19.4 (2.3%)</td>
</tr>
<tr>
<td></td>
<td>+7.3 (2.9%)</td>
<td>+10.5 (1.4%)</td>
</tr>
<tr>
<td></td>
<td>+14.9 (3.4%)</td>
<td>+12.3 (3.5%)</td>
</tr>
</tbody>
</table>

Values are mean (SEM).
*p < 0.05 v smooth stenoses.
LA-50, 50 \(\mu \)mol L-arginine/min; LA-150, 150 \(\mu \)mol L-arginine/min.
L-arginine, there was no difference in the magnitude of dilatation of coronary stenoses between smokers and non-smokers (11.2 (2.2)% vs 10.2 (5.2)%, respectively; NS), between hypercholesterolaemic and non-hypercholesterolaemic patients (10.2 (2.8)% vs 11.9 (3.0)%; NS), or between hypertensive and non-hypertensive patients (10.7 (3.5)% vs 11.2 (2.5)%; NS).

Discussion

In this study we investigated the effects of L- and D-arginine and the endothelium independent vasodilator glyceryl trinitrate in patients with coronary artery disease and stable angina. Complex stenoses were more likely to dilate in response to L-arginine than smooth stenoses, and they dilated to a greater degree. There was no significant response of either type of stenosis to D-arginine. The response to glyceryl trinitrate was independent of stenosis morphology.

Table 3 Reactivity of coronary stenoses and their reference segments to intracoronary administration of D-arginine (D-A) and nitrates

<table>
<thead>
<tr>
<th></th>
<th>Minimum lumen diameter (mm)</th>
<th>Reference segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stenoses</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td></td>
<td>1.64 (0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.8 (1.0)%</td>
</tr>
<tr>
<td>Complex</td>
<td></td>
<td>1.51 (0.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.6 (1.6)%</td>
</tr>
</tbody>
</table>

Values are mean (SEM).
DA-50, 50 µmol D-arginine/min; DA-150, 150 µmol D-arginine/min.
around the atheromatous plaque. Such neovascularisation of atheromatous plaques is well documented.

The resting tone appears to be similar for both smooth and complex stenoses, as evidenced by the similar magnitude of dilatation in response to nitrate administration. However, our results provide further evidence that complex plaques are active structures. There may be a link between enhanced inducible nitric oxide activity (produced by macrophages) and plaque instability. Macrophages and the T lymphocytes may produce cytokines that induce nitric oxide synthase. Furthermore, metalloproteinases produced in macrophages in vulnerable regions of complex atherosclerotic plaques may weaken the fibrous cap of the plaque, leading to rupture and thrombosis.

There is also growing evidence that macrophages may be involved in smooth muscle cell death by apoptosis which occurs in atheromatous plaques and that they initiate or enhance the degradation of collagen.

PLAQUE MORPHOLOGY AND RESPONSE TO L- AND D-ARGININE

L-arginine, whether given intravenously or intra-arterially, can reduce vascular tone. The mechanism by which it exerts its vasodilator effects is controversial, but the L-arginine–NO synthase nitric oxide pathway appears to be particularly important. The L isomer of arginine is a substrate for the endothelial and for both inducible (in macrophages and foam cells) and smooth muscle cell isoforms of the enzyme nitric oxide synthase. These enzymes convert L-arginine to citrulline and nitric oxide. The D isomer of arginine is not a substrate for nitric oxide synthase.

It has been suggested that diseased arteries may be relatively deficient in the substrate L-arginine. Apart from limiting nitric oxide production, substrate deficiency could lead to the generation of superoxide by both inducible and endothelial nitric oxide synthase. The results of our study are consistent with a relative deficiency of L-arginine at the site of stenoses in diseased coronary arteries, particularly within stenoses with complex morphology. They are a further indication that complex morphology is a marker of increased nitric oxide activity and they are consistent with partial deficiency of the substrate L-arginine found in experimental studies.

CONCLUSIONS

In patients with coronary artery disease, complex coronary stenoses dilate more than smooth stenoses after L-arginine administration, but neither respond to D-arginine. This is consistent with partial deficiency of the substrate for nitric oxide synthesis at the site of atheromatous stenoses, particularly when they are of complex morphology.

7th European Forum on Quality Improvement in Health Care

21–23 March 2002
Edinburgh, Scotland

We are delighted to announce this forthcoming conference in Edinburgh. Authors are invited to submit papers (call for papers closes on Friday 5 October 2001) and delegate enquiries are welcome.

The themes of the Forum are:

- Leadership, culture change, and change management
- Achieving radical improvement by redesigning care
- Health policy for lasting improvement in health care systems
- Patient safety
- Measurement for improvement, learning, and accountability
- Partnership with patients
- Professional quality: the foundation for improvement
- Continuous improvement in education and training
- People and improvement.

Presented to you by the BMJ Publishing Group (London, UK) and Institute for Healthcare Improvement (Boston, USA). For more information contact: quality@bma.org.uk or look at the website www.quality.bmj.com. Tel: +44 (0)20 7383 6409; fax: +44 (0)20 7373 6869.
Vasomotor effects of L- and D-arginine in stenotic atheromatous coronary plaque

D Tousoulis, G J Davies, C Tentolouris, G Goumas, C Stefanadis and P Toutouzas

Heart 2001 86: 296-301
doi: 10.1136/heart.86.3.296

Updated information and services can be found at:
http://heart.bmj.com/content/86/3/296

These include:

References
This article cites 41 articles, 14 of which you can access for free at:
http://heart.bmj.com/content/86/3/296#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: cardiovascular system (8842)
- Clinical diagnostic tests (4779)

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/