Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia

Y Fukuda, H Teragawa, K Matsuda, T Yamagata, H Matsuura, K Chayama

Objective: To examine the effect of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase, on coronary artery endothelial function in hypercholesterolaemic patients.

Design: Quantitative coronary angiography and Doppler flowmetry were used to examine the effects of intracoronary infusion of BH4 on vascular response to acetylcholine (ACh).

Setting: Tertiary cardiology centre.

Patients: 18 patients with angiographically normal coronary arteries, of whom nine had hypercholesterolaemia and nine had normocholesterolaemia.

Interventions: ACh (3 and 30 µg/min) was infused for two minutes into the left coronary ostium. ACh was then simultaneously infused with BH4 (1 mg/min) before and after infusion of L-N-monomethyl-L-arginine (L-NMMA) (40 µmol/min for five minutes).

Main outcome measures: Diameter of the epicardial coronary arteries and coronary blood flow.

Results: In hypercholesterolaemic patients, BH4 attenuated the ACh induced decrease in coronary diameter (p < 0.05) and restored the ACh induced increase in coronary blood flow (p < 0.05). In normocholesterolaemic patients, BH4 did not affect the ACh induced changes in coronary diameter or coronary blood flow. In both groups, L-NMMA decreased the baseline coronary diameter (p < 0.05) and baseline coronary blood flow (p < 0.05). In hypercholesterolaemic patients, L-NMMA inhibited both the BH4 mediated attenuation of the ACh induced decrease in coronary diameter (p < 0.05) and the BH4 mediated enhancement of the ACh induced increase in coronary blood flow (p < 0.01).

Conclusions: Intracoronary infusion of BH4 restores coronary endothelial function by improving the bioavailability of endothelium derived nitric oxide in hypercholesterolaemic patients.

Patients with various coronary risk factors, such as hypercholesterolaemia, have been shown to have impaired coronary artery endothelium dependent vasodilatation in response to acetylcholine (ACh), which is characterised by reduced endothelium derived nitric oxide bioavailability. It has been reported that tetrahydrobiopterin (BH4) serves as an essential cofactor for endothelial nitric oxide synthase and that reduced bioavailability of BH4 during activation of nitric oxide synthase decreases nitric oxide production, while simultaneously increasing formation of oxygen derived free radicals. In addition, a recent study suggested that BH4 may serve as a scavenger of oxygen derived free radicals. Therefore, intracellular BH4 concentrations in endothelial cells may be decreased in patients with impaired endothelial function. In support of this hypothesis, recent studies have shown that supplementation of BH4 improves impaired endothelial function under various pathological states in vivo, including hypercholesterolaemia and smoking.

In addition, Maier and colleagues reported that BH4 improves impaired coronary vascular responses to ACh in the coronary arteries of patients with coronary artery disease. However, most of the patients involved in these studies had multiple coronary risk factors or coronary artery disease. To date, no study has investigated the effect of BH4 on impaired coronary nitric oxide bioavailability in patients with hypercholesterolaemia.

We carried out this study to examine the effect of BH4 on coronary vascular responses to ACh in hypercholesterolaemic patients without other major coronary risk factors who have not yet developed coronary artery disease. In addition, we examined whether endothelium derived nitric oxide contributes to the coronary vascular response to BH4 by using L-N-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor.

METHODS

Study population

Between January 1999 and January 2001, we studied nine patients with hypercholesterolaemia (seven men and two women, mean (SD) age 61 (9) years, range 46–70 years) and nine age matched patients with normocholesterolaemia (seven men and two women, mean (SD) age 59 (9) years, range 45–70 years). All of the patients had angiographically normal epicardial coronary arteries and normal coronary flow reserve, determined at the time of diagnostic coronary angiography for the investigation of atypical chest pain. Chest pain was atypical for effort angina in all of the patients. The patients were not receiving any antihypertensive drugs, including angiotensin converting enzyme inhibitors, any drugs known to affect lipid metabolism, or any vitamin supplements for at least eight weeks before cardiac catheterisation. Hypercholesterolaemia was defined as a fasting total cholesterol concentration > 6.2 mmol/l without the use of antihypercholesterolaemic drugs. In addition, there was no medical evidence indicating the presence of either hypertension or diabetes mellitus in any of the patients. None of the patients involved in this study had smoked for the preceding 15 years. Patients with severe left ventricular dysfunction and those with valvar heart diseases were excluded from the study. Furthermore, patients with angiographically documented coronary spasm (> 50% luminal narrowing) after intracoronary infusion of ACh were excluded. Written consent was obtained from each patient and the protocol was approved by the Hiroshima University School of Medicine Ethics Committee.

Abbreviations: ACh, acetylcholine; BH4, tetrahydrobiopterin; L-NMMA, L-N-monomethyl-L-arginine
Study design
The study design has previously been described in detail. In brief, cardiac medications were withheld for at least 48 hours before cardiac catheterisation. A 6 French gauge guide catheter was introduced into the left main coronary artery. A 0.014 inch Doppler flow guide wire (Flowire, Cardiometrics, Mountain View, California, USA) was then advanced into the artery and positioned in a straight segment of the vessel to acquire an adequate flow velocity signal.

Study protocol
A schematic representation of the study protocol is shown in fig 1. After baseline conditions were established, incremental doses of ACh (3 and 30 µg/min, intracoronary concentration 10^{-7} and 10^{-6} mol/l, respectively) were infused into the left coronary artery for two minutes at five minute intervals. Fifteen minutes later, when baseline conditions had been reestablished, BH4 (1 mg/min, intracoronary concentration 3.3 × 10^{-7} mol/l) was infused into the left coronary artery for two minutes. This dose was based on the doses required for dilating human forearm vessels and was found to increase the concentration of BH4 in the coronary sinus from 2.5 to 13.4 nmol/l, respectively) were infused into the left coronary artery for two minutes at five minute intervals. Therefore, we expected that this dose of BH4 would provide sufficient amounts of BH4 for increasing nitric oxide bioavailability in the coronary endothelial cells. Incremental doses of ACh were then simultaneously infused with BH4 for two minutes. Fifteen minutes later, an intracoronary infusion of L-NMMA (40 µmol/min for five minutes) was started and the co-infusion of ACh with BH4 was repeated. Finally, glyceryl trinitrate (200 µg) was given as an intracoronary injection. All of the drugs were infused with an infusion pump (Terufusion, Tokyo, Japan) at a rate of 1 ml/min.

Coronary angiograms were performed at baseline and at the end of each drug infusion. The coronary blood flow velocity was monitored continuously by a 12 MHz pulsed Doppler velocimeter (FloMap, Cardiometrics). Arterial pressure, heart rate, and ECG were monitored continuously and recorded with a multichannel recorder (Polygraph 1600, NEC, Tokyo, Japan).

Quantitative coronary angiography and determination of coronary blood flow
Coronary angiograms were acquired and analysed using a digital image acquisition (HICOR x ray system, Siemens, Forchheim, Germany) and analysis systems (CAAS II QCA system, Pie Medical, Maastricht, Netherlands). The coronary segment 2 mm distal to the Doppler wire tip was selected for quantitative analysis. The average of three measurements of the luminal diameter was used for analysis. A strong correlation for intraobserver measurements was noted (r = 0.996, p < 0.001). Analysis of interobserver measurements also showed high reproducibility (r = 0.987, p < 0.001). Coronary blood flow velocity was measured at baseline and under steady state conditions for each drug infusion. Blood flow was quantitatively estimated from the Doppler flow velocity and the arterial diameter by the following equation:

\[\pi \times \text{average peak velocity} \times 0.125 \times \text{diameter}^2 \]

Changes in coronary diameter and coronary blood flow are expressed as the percentage change from the control value.

Drug preparations
ACh chloride was purchased from Daiichi Pharmaceutical Co (Tokyo, Japan) and glyceryl trinitrate was purchased from Nihonkayaku Co (Tokyo, Japan). L-NMMA and BH4 were purchased from Nihonkayaku Co (Tokyo, Japan).

![Schematic representation of the study protocol. ACh, acetylcholine; BH4, tetrahydrobiopterin; GTN, glyceryl trinitrate; L-NMMA, L-N,N-monomethyl-L-arginine.](image)
purchased from Sigma Chemical Co (St Louis, Missouri, USA) and sterilised at the Pharmacy Department of Hiroshima University Hospital. All drugs were dissolved in oxygen-free saline immediately before use.

Statistical analysis

Data are expressed as the mean (SEM) unless otherwise indicated. Differences in categorical variables between the two groups were analysed by Mann-Whitney U test. Serial responses of haemodynamic variables, coronary diameter, and coronary blood flow to various drugs were compared using a one way analysis of variance. If the analysis of variance showed a significant difference between the mean values, the level of significance was determined by contrast. Serial percentage changes in coronary diameter and coronary blood flow were compared using a two way analysis of variance for repeated measures. A probability value of p < 0.05 was considered to be significant.

RESULTS

Clinical characteristics and haemodynamic variables

Table 1 shows plasma lipoprotein concentrations of the patients studied. Total cholesterol and low density lipoprotein cholesterol concentrations at the time of the study were higher in hypercholesterolaemic patients than in normocholesterolaemic patients. Body mass index, blood pressure, and serum

Table 2 Change in coronary diameter and coronary blood flow

<table>
<thead>
<tr>
<th></th>
<th>Hypercholesterolaemic patients</th>
<th>Normocholesterolaemic patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary diameter (mm)</td>
<td>Change in coronary diameter (%)</td>
<td>Change in coronary blood flow (ml/min)</td>
</tr>
<tr>
<td>Baseline</td>
<td>3.42 (2.1)</td>
<td>3.31 (1.9)</td>
</tr>
<tr>
<td>ACh (3 µg/min)</td>
<td>-2.2 (1.7)</td>
<td>0.7 (1.9)</td>
</tr>
<tr>
<td>ACh (30 µg/min)</td>
<td>-7.4 (2.1)**</td>
<td>2.2 (1.9)</td>
</tr>
<tr>
<td>BH4</td>
<td>0.3 (2.1)</td>
<td>-0.5 (1.5)</td>
</tr>
<tr>
<td>BH4 + ACh (3 µg/min)</td>
<td>-0.5 (1.6)</td>
<td>0.8 (1.4)</td>
</tr>
<tr>
<td>BH4 + ACh (30 µg/min)</td>
<td>-1.1 (1.6)</td>
<td>0.9 (1.4)</td>
</tr>
<tr>
<td>Glyceryl trinitrate</td>
<td>3.43 (2.2)</td>
<td>3.41 (2.1)</td>
</tr>
<tr>
<td>Change in coronary diameter (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline before BH4</td>
<td>3.5 (2.1)</td>
<td>3.5 (1.7)</td>
</tr>
<tr>
<td>BH4</td>
<td>0.1 (1.6)</td>
<td>-0.1 (1.6)</td>
</tr>
<tr>
<td>BH4 + ACh (3 µg/min)</td>
<td>-0.2 (1.6)</td>
<td>0.1 (1.6)</td>
</tr>
<tr>
<td>BH4 + ACh (30 µg/min)</td>
<td>-1.1 (1.6)</td>
<td>0.1 (1.6)</td>
</tr>
<tr>
<td>Glyceryl trinitrate</td>
<td>3.5 (2.1)</td>
<td>3.5 (1.7)</td>
</tr>
</tbody>
</table>

Values are mean (SEM). *p < 0.05; **p < 0.01.

Figure 2 Percentage change in (A) coronary diameter and (B) coronary blood flow in response to acetylcholine (ACh) in hypercholesterolaemic and normocholesterolaemic patients. Vertical bars represent SEM. *p < 0.05.
glucose were similar in both groups (table 1). The intracoronary administration of ACh, BH4, or L-NMMA did not significantly alter the baseline mean arterial pressure or heart rate in either group. Glyceryl trinitrate decreased the mean arterial pressure but increased the heart rate compared with control values (data not shown).

Effect of intracoronary infusion of ACh or BH4 on coronary response

A high dose of ACh (30 µg/min) decreased the coronary diameter in hypercholesterolaemic patients (p < 0.01) while a low dose of ACh (3 µg/min) dilated the epicardial coronary arteries in normocholesterolaemic patients (p < 0.05) (table 2, fig 2). ACh produced dose dependent increases in coronary blood flow in both groups but the increase in coronary blood flow was significantly smaller in hypercholesterolaemic patients (p < 0.05 between the two groups; table 2, fig 2). In both groups, BH4 infusion alone did not cause any significant changes in either coronary diameter or coronary blood flow (table 2).

Effect of BH4 on ACh induced coronary response

In hypercholesterolaemic patients, co-infusion of BH4 and ACh attenuated the ACh (3 and 30 µg/min) induced constriction of the epicardial arteries (−0.1 (1.6)% and −2.3 (1.3)%, respectively; p < 0.05 v ACh alone; table 2, fig 3). In addition, in hypercholesterolaemic patients, co-infusion of BH4 and ACh restored the ACh induced increase in coronary blood flow (83.7 (19.5)% and 181.2 (26.4)%, p < 0.05 v ACh alone; table 2, fig 3). In contrast, in normocholesterolaemic patients, BH4 did not affect the ACh induced changes in coronary diameter or coronary blood flow (table 2, fig 4).

Effect of L-NMMA on ACh induced coronary response in the presence of BH4

Intracoronary infusions of L-NMMA significantly decreased both the baseline coronary diameter and the baseline coronary blood flow in both groups (table 2). In hypercholesterolaemic patients, L-NMMA inhibited both the BH4 mediated attenuation of the ACh induced decrease in coronary diameter (−3.3 (1.8)% and −9.3 (2.0)%, p < 0.05 v co-infusion of BH4 and ACh; table 2, fig 3) and the BH4 mediated enhancement of the ACh induced increase in coronary blood flow (14.7 (9.3)% and 61.3 (20.3)%, p < 0.01 v after co-infusion of BH4 and ACh; table 2, fig 3). In normocholesterolaemic patients, ACh in combination with BH4, which did not affect the coronary diameter or coronary blood flow before infusion of L-NMMA, decreased the coronary diameter (p < 0.01 v after co-infusion of BH4 and ACh; table 2, fig 4) and coronary blood flow (p < 0.05 v after co-infusion of BH4 and ACh; table 2, fig 4) after the infusion of L-NMMA.

Effect of glyceryl trinitrate on coronary response

Intracoronary infusion of glyceryl trinitrate caused increases in coronary diameter and coronary blood flow in both groups. There were no significant differences in the glyceryl trinitrate
induced increases in coronary diameter or coronary blood flow between the hypercholesterolaemic and normocholesterolae-
mic groups (table 2).

DISCUSSION
The present study showed that BH4 restores impaired coro-

erary arterial responses in hypercholesterolaemic patients who

have not yet developed coronary artery disease. The effects of
BH4 on the vascular responses to ACh were inhibited by
L-NMMA, an inhibitor of nitric oxide synthase. These findings
suggest that BH4 improves coronary artery endothelial
dysfunction by increasing nitric oxide bioavailability.

Hypercholesterolaemia and endothelial dysfunction
Endothelial cells contribute to the regulation of vascular tone
by releasing vasoactive compounds, including nitric oxide,
prostacyclin, and endothelium derived hyperpolarising factor.27–29
Although it remains to be determined whether the relative
contribution of these factors to endothelial dependent
vasodilatation varies according to vessel size in humans,
nitric oxide has been shown to be responsible for endothelium
dependent vasodilatation of the epicardial and resistance
arteries. Therefore, impaired coronary vasoresponses to ACh,
an agonist of nitric oxide, is characterised by reduced nitric
oxide bioavailability. The differences in vascular responses to
ACh between the hypercholesterolaemic and normocholes-
terolaemic patients observed in this study also indicate that
ACh induced dilatation of the epicardial and resistance arte-
ries was reduced in hypercholesterolaemic patients. This is in
keeping with previous reports of changes in endothelium
dependent vasorelaxation of coronary arteries before the
development of atherosclerotic lesions.30

Several mechanisms by which hypercholesterolaemia may
impair endothelial function have been proposed. Firstly,
substrate deficiency may reduce nitric oxide bioavailability.31
Secondly, several abnormalities in the signal transduction
pathway that carries the message from membrane receptors to
nitric oxide synthase may contribute to the depressed
endothelial responsiveness in the setting of hypercholesterolaemia.31,32
Thirdly, oxidised low density lipo-
protein, which is associated with hypercholesterolaemia, may
cause oxidative stress in endothelial cells and attenuate
endothelial nitric oxide bioavailability.33 Fourthly, increased
concentrations of asymmetric dimethyl L-arginine, an endog-
genous inhibitor of nitric oxide synthase, may be associated
with attenuated endothelium dependent vasodilatation in
hypercholesterolaemic patients.34 In addition to these mecha-
nisms, our data, as well as findings in the forearm
circulation,35 indicate that reduced bioavailability of BH4 may
also contribute to the impairment of endothelial nitric oxide
bioavailability in hypercholesterolaemic patients.

Mechanisms of impaired BH4 bioavailability in
hypercholesterolaemic patients
Intracellular BH4 may be either absolutely or relatively
deficient in the endothelial cells of hypercholesterolaemic
patients. Hypercholesterolaemia is associated with the
production of oxygen derived free radicals, which cause oxidative
stress in the endothelium. Oxidative stress may alter the
redox state of endothelial cells and thereby impair the biosyn-
thesis of BH4, which requires a normal cellular redox state.
Increased formation of oxygen derived free radicals may
inhibit the biosynthesis of BH4 or prevent recycling of BH4.36
Another possibility is that nitric oxide synthase activity may
be up regulated in the presence of hypercholesterolaemia,
leading to a net reduction in the bioavailability of BH4 in the
endothelial cells.

Effect of BH4 on endothelial function in humans
In this study, acute administration of BH4 attenuated the
vasoconstrictive responses to ACh and increased the coronary
blood flow response to ACh in hypercholesterolaemic patients,
in keeping with recent observations in patients with coronary
artery disease.37 These observations suggest that BH4 may
enter endothelial cells, replenishing stores during short term
administration of BH4. In addition, the effects of BH4 on the
vascular responses to ACh were inhibited by L-NMMA,
indicating that BH4 restores the vasorelaxant responses to
ACh through modulation of the L-arginine-nitric oxide path-
way and that the vasorelaxant responses to ACh are mediated
by nitric oxide. Because BH4 appears to serve as a scavenger
of oxygen derived free radicals as well as an essential cofactor for
nitric oxide synthase,38 BH4 presumably restored the vaso-
relaxant response to ACh in hypercholesterolaemic patients by
increasing nitric oxide bioavailability or by decreasing nitric
oxide breakdown by oxygen derived free radicals.

BH4 did not significantly affect the coronary arterial
responses to ACh in normocholesterolae,mic patients, suggest-
ing that the BH4 concentration in endothelial cells is not a rate
limiting factor for nitric oxide synthesis in the normocholes-
terolaemic group. In addition, BH4 alone did not change the
coronary diameter or blood flow in either group, consistent
with recent observations in the forearm and coronary
circulations.39,40 This observation suggests that BH4 does not
influence the basal nitric oxide bioavailability of endothelial
cells and allows us to speculate that the amount of BH4
required for the augmentation of nitric oxide bioavailability
differs between the basal and the stimulated states.

Study limitations
There are several limitations to the present study. None of the
patients had angiographically significant stenotic lesions.
However, intravascular ultrasound, which can be used to
evaluate wall thickening, was not performed in the present
study. Zeiher and colleagues11 reported that there is a
significant correlation between the vascular response to ACh
and atherosclerotic wall thickening in hypercholesterolaemic
patients. Therefore, further studies are necessary to assess
intimal hyperplasia and structural alterations of the vascular
wall using intravascular ultrasound.

Because previous investigators have used oxygen-free saline
to dissolve BH4 in vivo studies,21–24 we used oxygen-free
saline to dissolve BH4 in the present study. However, Walter
and colleagues12 reported that BH4 dissolved in bicarbonate
buffered solution increases myocardial blood flow in healthy
volunteers. Although it is possible that solvents can affect the
redox state of BH4, it remains to be determined whether the
solvent can influence the effect of BH4 on the vascular
response.

The intracoronary injection of contrast medium increased
coronary blood flow. Therefore, the infusion of contrast
medium may have caused flow induced vasodilatation.
However, contrast medium was infused at a fixed rate for a
total of 8 ml. Therefore, we believe that influences of flow
induced vasodilatation on the coronary diameter are similar
for each infusion of contrast medium.

Oral administration of BH4 causes a threefold increase in the
concentration of BH4 in hypercholesterolaemic patients during
in long time smokers.25 In our preliminary study, intracoro-
nary infusion of BH4 caused approximately a 100-fold increase in the concentration of BH4 in the coronary sinus.
Heitzer and colleagues13 showed that the effects of BH4 on
vascular responses to ACh were abolished by pretreatment
with an antioxidant, suggesting that functional depletion of
BH4 caused by enhanced BH4 oxidation accounts at least in
part for endothelial dysfunction in chronic smokers. Further-
more, treatment with vitamin C significantly increased
concentrations of the BH4 in cultured human umbilical vein
endothelial cells.26 Therefore, it is important to examine the
possibility that lower doses of BH4 and pretreatment with an
antioxidant can restore coronary endothelial function in
hypercholesterolaemic patients.
Although no single assay accurately reflects the production of oxygen derived free radicals, 8-iso-prostaglandin F2α has been shown to be a sensitive and specific marker of oxidative stress. However, we did not measure any markers of oxidative stress. Therefore, we cannot exclude the possibility that the direct antioxidant effect of BH4 may contribute to the improvement of endothelial dysfunction in hypercholesterolemic patients.

Conclusions

The present findings indicate that intracoronary BH4 infusion restores endothelial nitric oxide bioavailability in the epicardial and resistance arteries in hypercholesterolemic patients. BH4 supplementation may be therapeutically useful in restoring endothelial nitric oxide bioavailability, thereby attenuating the development of coronary endothelial dysfunction.

ACKNOWLEDGMENT

We are grateful to Nobuo Shiode MD, Masaya Kato MD, Yukihito Higashig MD, Hidekazu Hirao MD, Fumiharu Miura MD, and Kenya Sakai MD of the First Department of Internal Medicine, Hiroshima University, and to Takashi Akata MD of the Department of Anesthesiology, Kyusyu University for their technical assistance and helpful comments. We thank Miss Yoko Oumura for her secretarial assistance. We also thank Dr Shigeaki Arai and Dr Masahiko Sakai for the preparation of BH4, L-NMMA, and oxygen-free saline.

Authors’ affiliations

Y Fukuda, H Tagawa, K Matsuda, T Yamagata, H Matsuura, K Chayama, First Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan

REFERENCES

Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia

Y Fukuda, H Teragawa, K Matsuda, T Yamagata, H Matsuura and K Chayama

Heart 2002 87: 264-269
doi: 10.1136/heart.87.3.264

Updated information and services can be found at:
http://heart.bmj.com/content/87/3/264

These include:

References
This article cites 25 articles, 12 of which you can access for free at:
http://heart.bmj.com/content/87/3/264#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Metabolic disorders (1030)
Clinical diagnostic tests (4779)

Notes