T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves

L Wallby, B Janerot-Sjöberg, T Steffensen, M Broqvist

Background: The two most common causes of aortic stenosis are primary “degenerative” calcification of tricuspid aortic valves and secondary calcification of congenital bicuspid valves. T lymphocyte infiltration occurs in stenotic tricuspid aortic valves, indicating an inflammatory component, but it has not been shown whether it also occurs in stenotic bicuspid valves.

Objective: To compare non-rheumatic tricuspid and bicuspid stenotic aortic valves for the presence and distribution of T lymphocytes.

Setting: University hospital.

Patients and design: Valve specimens were obtained from 29 patients (15 women, 14 men, mean age 69 years (range 52–81 years)), referred to the hospital for aortic valve replacement because of symptomatic aortic valve stenosis. There were 17 tricuspid valves (from 10 women and seven men, mean age 71 years) and 12 bicuspid valves (from five women and seven men, mean age 67 years). To identify mononuclear inflammatory cells, sections were stained with antibodies for CD3 (pan-T cell antigen, Dako 1:400) and then graded histologically according to the degree of T cell infiltrate.

Results: T lymphocyte infiltration was present in both tricuspid and bicuspid stenotic aortic valves, without any significant differences in extent or localisation.

Conclusions: Stenotic bicuspid aortic valves show the same degree of T lymphocyte infiltration as degenerative tricuspid aortic valves. Inflammation needs to be considered in the pathogenesis of acquired aortic stenosis, irrespective of the primary valve anomaly.
For histological analysis, sections were stained with haematoxylin-eosin and Van Gieson stains. For determination of the type of mononuclear inflammatory cells, additional sections were stained with antibodies for CD3 (pan-T cell antigen, Dako 1:400) and L26 (C20) (pan-B cell antigen, Dako, 1:400) (Dako Corp, Carpinteria, California, USA). The sections were stained with antibodies for CD3 (pan-T cell antigen, Dako, 1:400) and L26 (C20) (pan-B cell antigen, Dako, 1:400) (Dako Corp, Carpinteria, California, USA). The sections were graded histologically according to the degree of mononuclear inflammatory infiltrate, as described by Stratford and colleagues.15

The aortic valves were considered to be of rheumatic origin if there was macroscopic evidence of commissural fusion and fibrous thickening of the apposition (closing) area only, with or without calcification.15 Microscopic criteria for rheumatic origin included destruction of the cusp architecture and neo-vascularisation in more than the basal third of the cusp.14 On the basis of these criteria, 29 patients of the 39 with stenotic aortic valves were considered to have non-rheumatic disease.

For histological analysis, sections were stained with haematoxylin-eosin and Van Gieson stains. For determination of the type of mononuclear inflammatory cells, additional sections were stained with antibodies for CD3 (pan-T cell antigen, Dako 1:400) and L26 (C20) (pan-B cell antigen, Dako, 1:400) (Dako Corp, Carpinteria, California, USA). The sections were graded histologically according to the degree of mononuclear inflammatory infiltrate, as described by Stratford and colleagues.15

The aortic valves were considered to be of rheumatic origin if there was macroscopic evidence of commissural fusion and fibrous thickening of the apposition (closing) area only, with or without calcification.15 Microscopic criteria for rheumatic origin included destruction of the cusp architecture and neo-vascularisation in more than the basal third of the cusp.14 On the basis of these criteria, 29 patients of the 39 with stenotic aortic valves were considered to have non-rheumatic disease.

The non-rheumatic stenotic aortic valves were divided into tricuspid (n = 17) and bicuspid (n = 12). Ten of the patients in the tricuspid group were women and seven were men (mean age 71 years, range 59–81 years). In the bicuspid group there were five women and seven men (mean age 67 years, range 52–77 years).

The valves in each group were investigated for the presence and localisation of a mononuclear cell infiltrate. The degree of infiltration was determined semiquantiatively (table 1).15 The extent of valvar calcification was also categorised semi-quantitatively as absent (0), mild (+), moderate (++) or severe (+++). In addition we investigated the localisation of the calcification, the degree of cusp thickening, and the localisation of fibrosis.

Statistical analysis

Comparisons between groups were performed by the exact p test, based on the method used by StatXact version 3, Cytel Software Corporation.17 The data were considered significant at a probability value of p < 0.05.

RESULTS

Calcification, fibrosis, and cusp thickening

Both tricuspid and bicuspid aortic valves showed a moderate to severe degree of calcification, but the bicuspid valves were significantly more affected (p = 0.03). While 15 of 17 tricuspid valves had calcification at the base of the cusps, in most of the bicuspid valves (9/12) the distribution of calcification was diffuse (table 3). All valves showed an increase in cusp thickness, but the bicuspid cusps were significantly thicker than the tricuspid (p = 0.02). In all the valves except one (a bicuspid valve), fibrosis was generalised.

Mononuclear cell infiltration

There were mononuclear cells in the specimens from all but two of the tricuspid valves and in all the bicuspid valves. There was no significant difference between the tricuspid and the bicuspid valves in the degree of lymphocyte infiltration (table 4). Twelve of the 15 tricuspid valves showed pure lymphocyte infiltration and the three remaining tricuspid valves also contained small numbers of plasma cells. Among the bicuspid valves there were six with pure lymphocyte infiltration and six with a combination of lymphocytes and scanty plasma cells. All the valves contained lymphocytes that stained positively for the CD-3 pan-T cell antigen, but eight of the 15 tricuspid valves and seven of 12 bicuspid valves also contained lymphocytes that stained positively for the CD-20 pan-B cell antigen. However, in 14 of the 15 tricuspid valves with mononuclear cell infiltration and in all the bicuspid valves, there was a dominance of CD-3 pan-T antigen positive cells. Two examples of the histological sections are shown in figs 1 and 2.

A majority of both tricuspid and bicuspid aortic valves showed a general, diffuse mononuclear cell infiltration (16/29). In addition to the generalised distribution, six valves also contained mononuclear cells localised in pericalcification or perivascular locations. Only one valve had a mononuclear cell infiltrate exclusively localised to the calcified area, two valves had an exclusively perivascular cell infiltrate, and two valves contained inflammatory cells adjacent to both pericalcification and perivascular locations.
In this study, histological examination of 29 excised stenotic aortic valves and semiquantitative grading of the mononuclear cell infiltrate showed T lymphocyte infiltration in both tricuspid and bicuspid valves, with no significant differences between the two in the extent and localisation of the infiltrate.

Acquired aortic stenosis is caused by rheumatic (post-inflammatory) fusion of the commissures, degenerative calcification of tricuspid aortic valves, and secondary calcification of congenital bicuspid valves. With the decline in the prevalence of rheumatic heart disease and the longer survival of the population in general, the spectrum of significant aortic stenosis has changed. Previously, rheumatic heart disease was the main cause of aortic valve replacement. However, among the 154 pure stenotic aortic valves excised at the Mayo clinic in 1990 there were 51% degenerative, 36% bicuspid, and only 9% rheumatic valves—even fewer than in our sample, in which 10 of the 39 cases (26%) were post-infectious.

Although the prevalence of degenerative aortic stenosis increases with age it is unlikely that age itself constitutes the major risk factor for developing this disease, and other possible mechanisms should be sought instead.

Mechanical stress has often been discussed as an initiating factor. In support of this, it is proposed that the less favourable stress-sharing properties of a bicuspid valve give rise to an earlier onset and more rapid progression of stenosis. However, most patients with tricuspid aortic valves show some inequalities in the individual cusp size. Differences in mechanical stress caused by inequality in cusp size, or by the presence of a bicuspid aortic valve, could contribute to the pathogenesis of the stenosis by accelerating the aging process.

Atherosclerosis has also been discussed as a possible factor in the pathogenesis. In the cardiovascular health study, multiple regression analysis showed that age, sex, lipoprotein Lp(a), hypertension, smoking, and low density lipoprotein cholesterol were significant independent risk factors for aortic stenosis. From the same study, Otto and colleagues found that the presence of aortic valve sclerosis without a significant reduction in blood flow through the aortic valve was associated with a 50% increase in cardiovascular death and myocardial infarction. Recently Palta and colleagues have shown that the presence of smoking, hypercholesterolaemia, and raised serum creatinine and calcium concentrations increase disease progression. Most of these risk factors correspond well with the established risk factors for atherosclerosis, even though there is no definite association between aortic stenosis and coronary artery disease. Furthermore, the presence of lipoprotein accumulation in stenotic aortic valves supports the theory that lipoprotein contributes to the pathogenesis of aortic stenosis, and there is a connection between the presence of lipoproteins and calcium deposits or bone formation in the aortic valve. Mohler has identified valvar interstitial cells with osteoblast-like characteristics in vitro; the properties of these cells are stimulated by transforming growth factor β1 and 25-hydroxycholesterol.

Presence of T lymphocytes in atherosclerotic lesions has been reported by several investigators, and evidence has accumulated of an inflammatory or even infectious pathogenesis. During the 1990s different groups demonstrated the presence of T lymphocytes in stenotic tricuspid aortic valves, giving rise to the question of a primary or secondary inflammatory component in the pathogenesis of degenerative aortic valve stenosis. By demonstrating the presence of interleukin-2 receptor positive cells in similar locations to T lymphocytes, it was also shown that the T lymphocytes were partly in an active state. The presence of lymphocytes in stenotic aortic valves had already been shown in the 1940s and 1950s, but only in association with larger calcium deposits. Histological descriptions of normal aortic valves exist from the same period, and both the normal tricuspid valve and the normal bicuspid valve show a total absence of inflammatory cells and lymphocytes. However, in published reports histological descriptions of the bicuspid stenotic aortic valve are lacking.

In our present study the T lymphocytes showed a general distribution in nine of 17 tricuspid valves and in seven of 12 bicuspid valves. From the same study, Otto and colleagues found that the presence of a bicuspid aortic valve, could contribute to the mechanical stress caused by inequality in cusp size, or by the presence of a bicuspid aortic valve, was associated with a 50% increase in cardiovascular death and myocardial infarction. Palta and colleagues have shown that the presence of smoking, hypercholesterolaemia, and raised serum creatinine and calcium concentrations increase disease progression. Most of these risk factors correspond well with the established risk factors for atherosclerosis, even though there is no definite association between aortic stenosis and coronary artery disease. Furthermore, the presence of lipoprotein accumulation in stenotic aortic valves supports the theory that lipoprotein contributes to the pathogenesis of aortic stenosis, and there is a connection between the presence of lipoproteins and calcium deposits or bone formation in the aortic valve. Mohler has identified valvar interstitial cells with osteoblast-like characteristics in vitro; the properties of these cells are stimulated by transforming growth factor β1 and 25-hydroxycholesterol.

Presence of T lymphocytes in atherosclerotic lesions has been reported by several investigators, and evidence has accumulated of an inflammatory or even infectious pathogenesis. During the 1990s different groups demonstrated the presence of T lymphocytes in stenotic tricuspid aortic valves, giving rise to the question of a primary or secondary inflammatory component in the pathogenesis of degenerative aortic valve stenosis. By demonstrating the presence of interleukin-2 receptor positive cells in similar locations to T lymphocytes, it was also shown that the T lymphocytes were partly in an active state. The presence of lymphocytes in stenotic aortic valves had already been shown in the 1940s and 1950s, but only in association with larger calcium deposits. Histological descriptions of normal aortic valves exist from the same period, and both the normal tricuspid valve and the normal bicuspid valve show a total absence of inflammatory cells and lymphocytes. However, in published reports histological descriptions of the bicuspid stenotic aortic valve are lacking.

In our present study the T lymphocytes showed a general distribution in nine of 17 tricuspid valves and in seven of 12 bicuspid valves. From the same study, Otto and colleagues found that the presence of a bicuspid aortic valve, could contribute to the mechanical stress caused by inequality in cusp size, or by the presence of a bicuspid aortic valve, was associated with a 50% increase in cardiovascular death and myocardial infarction. Palta and colleagues have shown that the presence of smoking, hypercholesterolaemia, and raised serum creatinine and calcium concentrations increase disease progression. Most of these risk factors correspond well with the established risk factors for atherosclerosis, even though there is no definite association between aortic stenosis and coronary artery disease. Furthermore, the presence of lipoprotein accumulation in stenotic aortic valves supports the theory that lipoprotein contributes to the pathogenesis of aortic stenosis, and there is a connection between the presence of lipoproteins and calcium deposits or bone formation in the aortic valve. Mohler has identified valvar interstitial cells with osteoblast-like characteristics in vitro; the properties of these cells are stimulated by transforming growth factor β1 and 25-hydroxycholesterol.

Presence of T lymphocytes in atherosclerotic lesions has been reported by several investigators, and evidence has accumulated of an inflammatory or even infectious pathogenesis. During the 1990s different groups demonstrated the presence of T lymphocytes in stenotic tricuspid aortic valves, giving rise to the question of a primary or secondary inflammatory component in the pathogenesis of degenerative aortic valve stenosis. By demonstrating the presence of interleukin-2 receptor positive cells in similar locations to T lymphocytes, it was also shown that the T lymphocytes were partly in an active state. The presence of lymphocytes in stenotic aortic valves had already been shown in the 1940s and 1950s, but only in association with larger calcium deposits. Histological descriptions of normal aortic valves exist from the same period, and both the normal tricuspid valve and the normal bicuspid valve show a total absence of inflammatory cells and lymphocytes. However, in published reports histological descriptions of the bicuspid stenotic aortic valve are lacking.

In our present study the T lymphocytes showed a general distribution in nine of 17 tricuspid valves and in seven of 12 bicuspid valves. From the same study, Otto and colleagues found that the presence of a bicuspid aortic valve, could contribute to the mechanical stress caused by inequality in cusp size, or by the presence of a bicuspid aortic valve, was associated with a 50% increase in cardiovascular death and myocardial infarction. Palta and colleagues have shown that the presence of smoking, hypercholesterolaemia, and raised serum creatinine and calcium concentrations increase disease progression. Most of these risk factors correspond well with the established risk factors for atherosclerosis, even though there is no definite association between aortic stenosis and coronary artery disease. Furthermore, the presence of lipoprotein accumulation in stenotic aortic valves supports the theory that lipoprotein contributes to the pathogenesis of aortic stenosis, and there is a connection between the presence of lipoproteins and calcium deposits or bone formation in the aortic valve. Mohler has identified valvar interstitial cells with osteoblast-like characteristics in vitro; the properties of these cells are stimulated by transforming growth factor β1 and 25-hydroxycholesterol.

Presence of T lymphocytes in atherosclerotic lesions has been reported by several investigators, and evidence has accumulated of an inflammatory or even infectious pathogenesis. During the 1990s different groups demonstrated the presence of T lymphocytes in stenotic tricuspid aortic valves, giving rise to the question of a primary or secondary inflammatory component in the pathogenesis of degenerative aortic valve stenosis. By demonstrating the presence of interleukin-2 receptor positive cells in similar locations to T lymphocytes, it was also shown that the T lymphocytes were partly in an active state. The presence of lymphocytes in stenotic aortic valves had already been shown in the 1940s and 1950s, but only in association with larger calcium deposits. Histological descriptions of normal aortic valves exist from the same period, and both the normal tricuspid valve and the normal bicuspid valve show a total absence of inflammatory cells and lymphocytes. However, in published reports histological descriptions of the bicuspid stenotic aortic valve are lacking.
T cells might constitute a primary pathogenic factor—that is, a primary autoimmune process leading to disease progression. Another possibility is that the T lymphocytes represent a secondary inflammatory response to other initiating factors—for example, infectious agents or atherosclerotic risk factors. This hypothesis needs to be tested in future research. Considering that bicuspid aortic valves occur in 1–2% of the population and that bicuspid valves constitute 41% of the non-rheumatic stenotic aortic valves in this study, the impact of the bicuspid anomaly should be substantial. However, according to Roberts and Fenoglio and colleagues, some individuals born with bicuspid aortic valves do not develop aortic valve stenosis or regurgitation. Thus aortic valve dysfunction is not an inevitable consequence of the bicuspid anomaly.

Study limitations

This study was a descriptive comparative study between tricuspid and bicuspid stenotic aortic valves. The finding of a similar degree of T lymphocyte infiltration in these two conditions does not provide any mechanistic information about the pathogenesis of non-rheumatic aortic stenosis. The study cannot determine whether the T lymphocytes play a pathogenic role in development of aortic stenosis, or if they represent a purely reactive change. Previously Olsson and colleagues have shown presence of interleukin-2 receptors in a fraction of T lymphocytes in non-rheumatic tricuspid aortic stenotic valves, possibly indicating that the T lymphocytes represent a specific antigen dependent immune response. Though we did not investigate interleukin-2 receptors in our study, the results obtained by Olsson and colleagues suggest that the T lymphocyte infiltration in both bicuspid and tricuspid stenotic valves might constitute a specific immune related inflammatory response.

Our histological and immunohistochemical analyses were made on only a few sections from a representative portion of the valve. We cannot exclude the possibility that false negative results occurred because not all the valve tissue was sectioned.

Conclusions

The pathogenesis of aortic stenosis is still unknown. The congenital bicuspid anomaly and varying degrees of inequality in tricuspid valves may be a morphological substrate on which the disease process rests, but this is not the only factor. The fact that some individuals with bicuspid aortic valves do not develop aortic stenosis indicates that predisposing factors are required—for example, a tendency to develop autoimmune inflammation. Further studies are needed to evaluate this hypothesis.

REFERENCES

www.heartjnl.com
T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves

L Wallby, B Janerot-Sjöberg, T Steffensen and M Broqvist

Heart 2002 88: 348-351
doi: 10.1136/heart.88.4.348

Updated information and services can be found at:
http://heart.bmj.com/content/88/4/348

These include:

References
This article cites 28 articles, 9 of which you can access for free at:
http://heart.bmj.com/content/88/4/348#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Aortic valve disease (415)
Drugs: cardiovascular system (8842)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/