Increasing plasma potassium with amiloride shortens the QT interval and reduces ventricular extrasystoles but does not change endothelial function or heart rate variability in chronic heart failure

C A J Farquharson, A D Struthers

Objectives: To test whether simply increasing plasma potassium with amiloride would exert any of the same beneficial effects on “surrogate outcome measures” that are seen with spironolactone. The latter has been shown to improve mortality in chronic heart failure, possibly as a result of improvements in endothelial dysfunction, vascular angiotensin converting enzyme (ACE), autonomic function, myocardial fibrosis, ventricular arrhythmias, and QT interval indices.

Design: Randomised, placebo controlled trial.

Setting: Teaching hospital.

Patients and interventions: Double blind crossover study involving 10 patients with New York Heart Association functional class III–IV chronic heart failure comparing 5 mg/day amiloride (one month) with placebo.

Main outcome measures: Endothelial function, vascular ACE, collagen markers, 24 hour ECG, and QT interval results.

Results: The amiloride induced increase in serum potassium (0.4 mmol/l) did not significantly change endothelial dysfunction, vascular ACE, collagen markers, or heart rate variability. However, amiloride significantly improved QT interval indices, reducing both QT dispersion (from 65.7 ms to 50.9 ms, p = 0.001) and mean maximal corrected QT (from 445 ms to 435 ms, p = 0.008). Amiloride also reduced ventricular extrasystoles (p < 0.05).

Conclusions: Amiloride shortens QT interval length and reduces ventricular extrasystoles in chronic heart failure, implying that this effect is caused by potassium retention per se. However, unlike spironolactone, amiloride did not improve endothelial dysfunction, vascular ACE, heart rate variability, or myocardial fibrosis, implying that spironolactone improves these latter effects by aldosterone blockade rather than by simply increasing serum potassium. Therefore, amiloride has fewer beneficial mechanistic effects than spironolactone, but it does share with spironolactone the ability to shorten the QT interval and reduce ventricular extrasystoles.

Recently RALES (randomized aldactone evaluation study) showed a significant 30% survival advantage in patients with chronic heart failure (CHF) receiving spironolactone compared with placebo. Mechanisms that may contribute to this mortality benefit in CHF include spironolactone’s ability to improve endothelial dysfunction, to suppress vascular angiotensin converting enzyme (ACE), to reduce myocardial fibrosis, to improve heart rate variability (HRV), to reduce QT interval length and dispersion, and to reduce ventricular extrasystoles.

Interestingly, a recently published retrospective analysis of SOLVD (studies of left ventricular dysfunction) focusing specifically on diuretic use showed that potassium losing diuretics were associated with increased risk of arrhythmic death but potassium sparing diuretics were not. We recently also found a beneficial effect of potassium sparing diuretic use on mortality in patients with CHF. Amiloride, triamterene, and spironolactone are all potassium sparsers but spironolactone has the added effect of blocking aldosterone. In both of the above papers, the authors did not differentiate between potassium sparing agents; therefore it is difficult to know whether this beneficial effect was indeed caused by increasing potassium per se or whether aldosterone blockade contributed.

We therefore set out to ascertain whether spironolactone’s already described effects on these surrogate outcome measures are also found after treatment with a potassium sparing diuretic that does not have aldosterone blocking properties, such as amiloride. We therefore investigated whether amiloride had any effects on endothelial function and vascular ACE activity in CHF patients. We also studied whether amiloride improved HRV as assessed by time and frequency domain (power spectral) HRV analyses. The impact of amiloride on ventricular arrhythmias and QT interval length was also elucidated. Finally, the effect of amiloride on myocardial fibrotic change was ascertained by using serum measurements of procollagen type III amino terminal peptide (PIIINP), which reflects collagen turnover and is an accepted surrogate marker for myocardial fibrosis.

METHODS

Study population

Ten male patients with stable mild to moderate CHF secondary to ischaemic cardiomyopathy (table 1) established on loop diuretic that does not have aldosterone blocking properties, such as amiloride. We therefore investigated whether amiloride had any effects on endothelial function and vascular ACE activity in CHF patients. We also studied whether amiloride improved HRV as assessed by time and frequency domain (power spectral) HRV analyses. The impact of amiloride on ventricular arrhythmias and QT interval length was also elucidated. Finally, the effect of amiloride on myocardial fibrotic change was ascertained by using serum measurements of procollagen type III amino terminal peptide (PIIINP), which reflects collagen turnover and is an accepted surrogate marker for myocardial fibrosis.

Abbreviations: ACE, angiotensin converting enzyme; CHF, chronic heart failure; HOPE, heart outcomes prevention evaluation; HRV, heart rate variability; L-NMMA, N’-monomethyl-L-arginine; NO, nitric oxide; NYHA, New York Heart Association; PIIINP, procollagen type III amino terminal peptide; QTc, corrected QT interval; QTcd, corrected QT interval dispersion; QTd, QT interval dispersion; RALES, randomized aldactone evaluation study; SOLVD, studies of left ventricular dysfunction; UK-HEART, United Kingdom heart failure evaluation and assessment of risk trial
diuretic and ACE inhibitor treatment gave written informed
consent to participate in the study, which had prior approval
by the Tayside committee on medical research ethics. The
study conformed with the principles outlined in the Declara-
tion of Helsinki.

Study experimental design
One month of treatment with amiloride 5 mg/day was studied
using a randomised, placebo controlled, double blind, cross-
over trial with a two week washout period between treatment
phases. Other cardiovascular medications remained constant.
Each subject attended for two studies of forearm vascular
function, performed at the end of the placebo and amiloride
administration phases. The protocol for these visits is detailed
below. At baseline and during the final day of each treatment
phase, a 12 lead resting ECG was obtained for subsequent
analysis of QT indices, as well as a 24 hour ambulatory ECG
monitor to assess HRV and ventricular extrasystoles.

Vascular function protocol
Following overnight fasting, subjects attended a temperature
controlled laboratory (24–26°C) in our research unit at 8 am
and were asked to lie supine. All cardiovascular medications
were taken immediately before the start of the study visit.
After 20 minutes' rest, the non-dominant brachial artery was
canulated under local anaesthesia with a 27 gauge steel nee-
dle mounted on to a 16 gauge epidural catheter. After 30 min-
utes of saline infusion, baseline forearm blood flow was
measured using forearm venous occlusion plethysmography,
which has been described by our group in detail previously.3,4

Drugs according to the following study infusion protocol
were then infused into the study arm using a constant rate
infuser. Firstly, acetylcholine was infused at 25, 50, and
100 nmol/min, each for five minutes, to produce a cumulative
dose–response curve. This was followed by sodium nitroprus-
side at 4.2, 12.6, and 37.8 nmol/min, each for five minutes,
and then N ω -monomethyl-L-arginine (L-NMMA) at 1, 2, and
4 µmol/min for five minutes each. This in turn was followed by
angiotensin I at 64, 256, and 1024 pmol/min for seven minutes
each, and finally angiotensin II was infused at 16, 64, and
236 pmol/min for seven minutes each.

Between different drugs, the drug infusion set was flushed
with saline and sufficient time was allowed for the forearm
blood flow to return to baseline values (approximately 20–30
minutes). Forearm blood flow was measured at each baseline
and then during the last two minutes of each drug infusion.
Blood pressure was measured in the non-infused (control)
arm at the beginning of the study, after each saline washout
period, and at the conclusion of the study.

Acetylcholine is an endothelium dependent vasodilator and
sodium nitroprusside is an endothelium independent vasodi-
lator. L-NMMA is a competitive nitric oxide (NO) synthase
inhibitor. Angiotensin I only exerts its vasoconstrictive effect
in our forearm model through conversion in the vasculature to
angiotensin II, and therefore the vasoconstriction elicited
reflects vascular angiotensin I to angiotensin II conversion.5

Analysis of QT interval indices
QT intervals were analysed on resting 12 lead ECGs recorded
at baseline and at the end of each treatment phase. Tracings
were taken at a speed of 25 mm/s, with three complexes in
each lead used. Only ECGs with more than eight viable leads
for analysis were used. The tracings were numbered randomly
by a second blinded investigator and analysed blindly by a
single investigator (CAJF) using a digitising pad and dedicated QT
analysis software (University of Dundee).

The QT interval was taken from the QRS complex to the end
of the T wave (that is, return to the T/P baseline). If U waves
were present, the QT was measured to the nadir of the curve
between the U and T waves. QT intervals were corrected for rate
using Bazett's formula [QTc = QT/RR1⁄2]. QT dispersion (QTd)
was defined as the difference between the maximum and mini-
imum QT intervals (QTd = QTmax – QTmin), with corrected QT
dispersion (QTcd) being the respective difference in maximum
and minimum QTc intervals (QTcd = QTcmax – QTcmin).

Ambulatory 24 hour ECG monitoring
Twenty four hour ambulatory ECG recordings were obtained
for analysis using a standard two channel (four lead) Tracker
2 analogue tape recorder (Reynolds Medical Limited, Hert-
fordshire, UK), recording standard leads CM1 and CM5. This
was carried out at baseline and at the end of each course of tablets
(for the day after the vascular function assessment). Arrhyth-
mias were analysed semiautomatically with the Pathfinder 500
Series analyser system (version 4.63 software, Reynolds
Medical Ltd). Each recording was individually checked,
with RR intervals and QRS configuration manually edited, to
ensure correct arrhythmia recognition and classification.

HRV analysis
HRV was assessed in both time and frequency domains
according to published guidelines.11 Following visual editing
and correct identification of aberrant beats, the RR interval
variability on the ambulatory recordings was automatically
analysed statistically as a function of time (time domain
analysis) by the Pathfinder software. The following time
domain indices were evaluated from each 24 hour ECG
recording: standard deviation of all RR intervals, 24 hour tri-
angular index, standard deviation of five minute mean RR
intervals, and the root mean square of differences of
successive RR intervals.

Frequency domain (power spectral) analysis of the RR
interval variability was undertaken using fast Fourier
transformation, operating on sampled five minute data
segments of each hour over the 24 hour recording. Time peri-
ods with excessive movement artefact observed were excluded
from analysis. Spectral plots were used to identify the low fre-
quency component (0.03–0.14 Hz) and the high frequency
component (0.18–0.40 Hz). These indices were expressed in

Table 1 Baseline demographic, haemodynamic, humoral, and treatment characteristics of patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mean (SD) or numbers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>69.5 (5.6)</td>
</tr>
<tr>
<td>NYHA class ll/lll</td>
<td>5/5</td>
</tr>
<tr>
<td>Previous/smokers</td>
<td>8/2</td>
</tr>
<tr>
<td>Average smoking duration (pack years)</td>
<td>23.5 (15)</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>131 (7)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>77 (5)</td>
</tr>
<tr>
<td>Left ventricular ejection fraction (%)</td>
<td>28.0 (6.9)</td>
</tr>
<tr>
<td>Left ventricular fractional shortening (%)</td>
<td>19.5 (7.6)</td>
</tr>
<tr>
<td>Serum urea (mmol/l)</td>
<td>7.2 (1.6)</td>
</tr>
<tr>
<td>Serum creatinine (µmol/l)</td>
<td>118 (21)</td>
</tr>
<tr>
<td>Serum total cholesterol (mmol/l)</td>
<td>5.1 (0.2)</td>
</tr>
<tr>
<td>Serum urate (mmol/l)</td>
<td>0.45 (0.8)</td>
</tr>
<tr>
<td>Mean dose of ACE inhibitor (mg/day)</td>
<td>12.9 (5.7)</td>
</tr>
<tr>
<td>Lisinopril (7 patients)</td>
<td>12.9 (5.7)</td>
</tr>
<tr>
<td>Enalapril (3 patients)</td>
<td>16.7 (5.7)</td>
</tr>
<tr>
<td>Duration of ACE inhibition (years)</td>
<td>6.1 (3.2)</td>
</tr>
<tr>
<td>Baseline serum ACE activity (taking ACE inhibitor (IU/l))</td>
<td>7.8 (1.8)</td>
</tr>
<tr>
<td>Random plasma glucose (mmol/l)</td>
<td>5.7 (0.7)</td>
</tr>
<tr>
<td>Daily furosemide dose 40 mg/80 mg</td>
<td>9/1</td>
</tr>
<tr>
<td>Daily aspirin dose 75 mg/150 mg</td>
<td>6/4</td>
</tr>
<tr>
<td>Concomitant medication</td>
<td></td>
</tr>
<tr>
<td>Nitrates</td>
<td>5</td>
</tr>
<tr>
<td>β Blockers</td>
<td>6</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>4</td>
</tr>
<tr>
<td>Statins/antioxidant vitamins</td>
<td>0</td>
</tr>
</tbody>
</table>

ACE, angiotensin converting enzyme; NYHA, New York Heart Association.
normalised units—that is, the relative percentage of each compared with the total oscillatory power. Separate analyses were undertaken for daytime (10 am to 11 pm), night time (11 pm to 6 am), and dawn (6 am to 10 am) hours, with all analyses carried out by a blinded single observer (CAJF).

**PIIINP assay**

The effect of treatment on myocardial fibrosis during each study phase was assessed from serum PIIINP measured with a standard commercial radioimmunoassay.

**Statistical analysis**

Forearm blood flow rates obtained in the vascular function protocols were expressed as ml/min/100 ml forearm volume. These forearm blood flows were converted to the ratio between the increase in blood flow in the infused arm and the blood flow in the control arm, expressed as the percentage change in forearm blood flow from the baseline immediately preceding each drug administration (mean (SEM)), calculated according to the method of Whitney.

Clinical characteristics of the placebo and amiloride study visits were compared using Student’s paired t tests. Statistical analysis of forearm blood flow measurements, QTd indices, and HRV analysis for individual subjects were compared between treatments using two way analysis of variance with repeated measures, correcting for multiple comparisons for within group effects. A probability value of p < 0.05 was considered significant and p < 0.01 highly significant.

**RESULTS**

**Subject characteristics**

Baseline forearm blood flow observed in the amiloride treatment group was virtually identical to that of the placebo group 2.9 (0.3) ml/min/100 ml with placebo v 2.8 (0.3) ml/min/100 ml with amiloride, p = 0.67). The baseline forearm blood flow rates preceding each drug infusion were not different between the limbs, indicative of adequate drug washout between each infusion phase.

There was also no significant difference between blood pressure and heart rate either between or during each study day (table 2). Table 2 also shows urea, creatinine, and plasma potassium assay results. There was no perceived subjective or objective change in New York Heart Association (NYHA) functional class with regard to patient symptoms between the two treatment periods.

**Forearm vascular blood flow responses**

No significant improvement was seen in endothelial dependent vasodilation in the amiloride treatment group in response to acetylcholine (p = 0.85 for difference between whole dose–response curves) (fig 1). No changes were seen in the vasoconstrictive responses to L-NMMA (p = 0.52), implying that tonic NO bioactivity was not changed by amiloride. Amiloride also had no effect on sodium nitroprusside responses (p = 0.94).

With regard to the vascular ACE axis, there were no significant differences between the treatment groups in the forearm responses to either angiotensin I (p = 0.81 for difference between dose–response curves) (fig 2) or the control vasoconstrictor angiotensin II (p = 0.90).

**Changes in QT interval indices**

Amiloride significantly reduced both QTd and QTcd (p < 0.001 between baseline and amiloride, p < 0.05 between
placebo and amiloride) (table 3). QTcmax was also significantly improved with amiloride (p < 0.05).

HRV analysis
There were no significant differences from baseline in any of the HRV indices between placebo and amiloride treatment. Neither time domain nor frequency domain measures were significantly affected by active treatment either over the total 24 hour period or during the daytime, night time, or dawn periods (tables 4 and 5).

With regard to arrhythmic activity, there was a significant reduction in the number of ventricular extrasystoles from baseline observed over the 24 hour monitoring period with amiloride compared with placebo (change in ventricular extrasystoles from baseline −14 (279) with placebo v −310 (436) with amiloride, p < 0.05). No episodes of non-sustained ventricular tachycardia were observed on any of the 30 24-hour tapes.

Changes in serum PIIINP
There was no significant change in serum concentrations of PIIINP in the amiloride treatment group as compared with either baseline or placebo (table 4).

Results summary
Table 6 summarises the comparison that we make here with amiloride versus our previous work with spironolactone.1,5

DISCUSSION
In this study, amiloride caused its expected effect of increasing potassium concentrations. An important point is that the increment we observed here with amiloride is identical in magnitude to the increment we previously saw with spironolactone.25

The primary end point of this study was to ascertain whether amiloride, by raising potassium, could improve endothelial dysfunction in CHF. Unlike our previous observations with spironolactone,1,5 a rise in serum potassium of 0.4 mmol/l induced by amiloride had no effect whatsoever on either basal or stimulated NO activity, nor did amiloride alter vascular ACE inhibition, HRV, or vascular collagen turnover. The only positive effects of amiloride were on QT interval length and ventricular extrasystoles.

---

**Table 3** Changes in QT indices during treatment phases in the 10 patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline (mean (SD))</th>
<th>Placebo (mean (SD))</th>
<th>Amiloride (mean (SD))</th>
<th>Changes between placebo and amiloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT dispersion (ms)</td>
<td>65.4 (29.2)</td>
<td>65.7 (25.8)</td>
<td>50.9 (26.1)**†</td>
<td>14.8 (9.6) 95% CI 7.9 to 21.7, p=0.001</td>
</tr>
<tr>
<td>QTc dispersion (ms)</td>
<td>68.2 (29.0)</td>
<td>68.3 (24.8)</td>
<td>52.6 (25.3)**†</td>
<td>15.7 (10.0) 95% CI 8.6 to 22.9, p=0.001</td>
</tr>
<tr>
<td>QTcmax (ms)</td>
<td>442.6 (24.6)</td>
<td>445.0 (26.6)</td>
<td>435.2 (25.7)**†</td>
<td>9.8 (9.1) 95% CI 3.3 to 16.2, p=0.008</td>
</tr>
</tbody>
</table>

*p<0.05 between baseline and amiloride treatment phases; **p<0.001 between baseline and amiloride treatment phases; †p<0.05 between placebo and amiloride treatment phases.

QTc, corrected QT interval.

**Table 4** Effect of amiloride or placebo on mean 24 hour heart rate variability and arrhythmia indices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Placebo</th>
<th>Amiloride</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR interval</td>
<td>929 (149)</td>
<td>945 (137)</td>
<td>947 (131)</td>
<td>NS</td>
</tr>
<tr>
<td>HRV index</td>
<td>28 (9)</td>
<td>28 (9)</td>
<td>31 (10)</td>
<td>NS</td>
</tr>
<tr>
<td>SDNN</td>
<td>114 (39)</td>
<td>115 (36)</td>
<td>114 (35)</td>
<td>NS</td>
</tr>
<tr>
<td>SDANN</td>
<td>99 (32)</td>
<td>97 (29)</td>
<td>99 (33)</td>
<td>NS</td>
</tr>
<tr>
<td>RMSSD</td>
<td>26 (6)</td>
<td>26 (6)</td>
<td>28 (5)</td>
<td>NS</td>
</tr>
<tr>
<td>Frequency domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF (n.u.)</td>
<td>50 (22)</td>
<td>56 (21)</td>
<td>52 (23)</td>
<td>NS</td>
</tr>
<tr>
<td>HF (n.u.)</td>
<td>45 (24)</td>
<td>38 (22)</td>
<td>42 (25)</td>
<td>NS</td>
</tr>
<tr>
<td>LF/HF</td>
<td>2.9 (2.6)</td>
<td>3.0 (2.8)</td>
<td>2.7 (2.4)</td>
<td>NS</td>
</tr>
<tr>
<td>24 hour arrhythmia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔAVE/24 hours</td>
<td>NA</td>
<td>−14 (279)</td>
<td>−310 (436)</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSVT/24 hours</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Vascular collagen turnover</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum PIIINP</td>
<td>3.2 (1.0)</td>
<td>3.3 (1.3)</td>
<td>3.2 (0.8)</td>
<td>NS</td>
</tr>
</tbody>
</table>

All values are expressed as mean (SD).

*Placebo versus amiloride treatment phases.

ΔAVE/24 hours, change in frequency of ventricular extrasystoles over 24 hours from baseline; HF, high frequency; LF, low frequency; NSVT, non-sustained ventricular tachycardia; n.u., normalised unit; PIIINP, procollagen type III amino terminal peptide; RMSSD, root mean square of differences of successive RR intervals; SDANN, standard deviation of five minute mean RR intervals; SDNN, standard deviation of all RR intervals.
Amiloride and endothelial function

The potential value of studying endothelial dysfunction has recently been underscored by the findings of four recent studies that endothelial dysfunction is indeed directly associated with future cardiovascular events, including one study using the forearm vessels. Furthermore, there are now three treatments (statis and spironolactone in RALES and ACE inhibitors in HOPE (heart outcomes prevention evaluation)) that in parallel improve brachial artery endothelial dysfunction and reduce cardiovascular events and mortality in large trials. Vitamin E is a fourth treatment with corresponding evidence of a reduction in future mortality and on endothelial dysfunction—that is, both are usually neutral.

Table 5 Diurnal effects of amiloride or placebo on heart rate variability parameters

<table>
<thead>
<tr>
<th>Time</th>
<th>Parameter</th>
<th>Baseline</th>
<th>Placebo</th>
<th>Amiloride</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 am to 11 pm</td>
<td>RR (ms)</td>
<td>916 (149)</td>
<td>938 (142)</td>
<td>941 (142)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF (n.u.)</td>
<td>50 (19)</td>
<td>56 (19)</td>
<td>53 (22)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>HF (n.u.)</td>
<td>47 (21)</td>
<td>38 (21)</td>
<td>42 (24)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF/HF</td>
<td>1.9 (1.2)</td>
<td>2.4 (1.5)</td>
<td>2.3 (1.2)</td>
<td>NS</td>
</tr>
<tr>
<td>11 pm to 6 am</td>
<td>RR (ms)</td>
<td>949 (118)</td>
<td>968 (117)</td>
<td>963 (96)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF (n.u.)</td>
<td>54 (27)</td>
<td>57 (25)</td>
<td>55 (24)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>HF (n.u.)</td>
<td>42 (29)</td>
<td>36 (37)</td>
<td>40 (26)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF/HF</td>
<td>4.8 (1.2)</td>
<td>4.3 (3.5)</td>
<td>3.6 (2.9)</td>
<td>NS</td>
</tr>
<tr>
<td>6 am to 10 am</td>
<td>RR (ms)</td>
<td>930 (173)</td>
<td>949 (161)</td>
<td>958 (164)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF (n.u.)</td>
<td>50 (22)</td>
<td>54 (20)</td>
<td>48 (23)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>HF (n.u.)</td>
<td>45 (22)</td>
<td>45 (22)</td>
<td>47 (24)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LF/HF</td>
<td>3.0 (2.3)</td>
<td>2.4 (1.8)</td>
<td>1.8 (0.9)</td>
<td>NS</td>
</tr>
</tbody>
</table>

All values are expressed as mean (SD).

*Placebo versus amiloride treatment phases.

Table 6 Comparison of spironolactone versus amiloride in chronic heart failure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spironolactone</th>
<th>Amiloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endothelial function</td>
<td>Improves⁴</td>
<td>No effect</td>
</tr>
<tr>
<td>Vascular ACE</td>
<td>Improves⁴</td>
<td>No effect</td>
</tr>
<tr>
<td>Collagen markers</td>
<td>Improves⁵</td>
<td>No effect</td>
</tr>
<tr>
<td>Autonomic imbalance</td>
<td>Improves⁵</td>
<td>Improves⁵</td>
</tr>
<tr>
<td>QTcmax</td>
<td>Improves⁵</td>
<td>Improves⁵</td>
</tr>
<tr>
<td>Ventricular extrasystoles</td>
<td>Improves⁵</td>
<td>Improves⁵</td>
</tr>
</tbody>
</table>

Amiloride and QT interval changes

One of the key observations of this study was the finding that amiloride reduced QTcmax and QTd compared with placebo, as indeed does spironolactone. Although QTd is controversial in cross-sectional studies, intra-individual changes in the length of the QT interval may be more meaningful, especially when as here they were accompanied by intraindividual decreases in ventricular extrasystole.

It is well recognised that potassium depletion leads to increased QT interval length and to arrhythmogenesis with increased likelihood of development of ventricular dysrhythmia such as torsade de pointes. Indeed, in the recent UK-HEART (United Kingdom heart failure evaluation and assessment of risk trial) in patients with CHF, a small reduction in serum potassium was a significant predictor of sudden cardiac death in CHF. Potassium is one of the main determinants of the QT interval, being responsible for the outward repolarisation currents. Reduction in serum potassium therefore results in slower repolarisation and prolongation of QT intervals. Conversely, intravenous potassium infusion normalises QT prolongation and reduces QTd in patients with CHF.

Therefore, this close relation between potassium and the QT interval is likely to be the main explanation for the beneficial effect that was seen for amiloride on QT intervals. Our data therefore tentatively suggest that amiloride as a potassium sparing diuretic may have indirect antiarrhythmic properties, a concept in keeping with the SOLVD data on diuretics and sudden cardiac death. Our observations that amiloride produced a significant reduction in ventricular extrasystoles should be treated with caution since ventricular extrasystolic frequency is a far less important marker of arrhythmogenicity than the incidence or duration of non-sustained ventricular tachycardia. Clearly a much greater sample size would be required to observe any effect of amiloride on this more important parameter.
Amiloride and HRV

Autonomic dysfunction (as measured by HRV) is a well known independent predictor of mortality in CHF. Spiro- nolactone has been shown to improve HRV indices in CHF, thought to be modulated by increasing parasympathetic activity. In this study, amiloride appeared to have no impact whatsoever on either time domain or frequency domain HRV parameters. Our findings show that potassium itself does not modulate autonomic tone in CHF. This is most unlikely to be caused by the small sample size since we have three readings per patient and no trend whatsoever is apparent.

Study limitation

A limitation of this study is that amiloride and spironolactone were not directly compared in a head to head comparison, which makes comparisons between the two treatments only tentative. Such a direct comparison is now warranted to see whether our current findings can be reproduced.

Conclusions

This study has shown that in patients with CHF the potassium sparing diuretic amiloride does not improve endothelial dysfunction, modulate vascular ACE inhibition, alter collagen markers, or improve HRV, unlike previous studies with the aldosterone antagonist spironolactone. The implication is that these beneficial effects of spironolactone on these particular surrogate outcome measures occur by a mechanism other than by simply raising serum potassium. However, amiloride did reduce QT interval length and ventricular extrasystoles, suggesting that potassium retention even within the normal range has antiarrhythmic effects in CHF, which may contribute to the reduced sudden death mortality observed with potassium sparing diuretics in the SOLVD trial. Therefore, along with previous results with spironolactone, these results suggest that spironolactone has a wider range of beneficial effects than amiloride on surrogate outcome measures. On the other hand, the reduced QT interval seen with both spirono- lactone and amiloride may be a contributor, perhaps even a strong contributor, to the mortality reduction seen in RALES.

ACKNOWLEDGEMENTS

We thank the British Heart Foundation for their invaluable support during this study, as well as Lesley McFarlane and Valerie Godfrey for their expert technical assistance.

Authors’ affiliations

C A J Farquharson, A D Struthers, University Department of Clinical Pharmacology and Therapeutics, Ninewells Hospital and Medical School, Dundee, UK

REFERENCES


Increasing plasma potassium with amiloride shortens the QT interval and reduces ventricular extrasystoles but does not change endothelial function or heart rate variability in chronic heart failure

C A J Farquharson and A D Struthers

*Heart* 2002 88: 475-480
doi: 10.1136/heart.88.5.475