FEATURED CASE REPORT

Percutaneous technique for the reduction of knotted coronary catheters

M A Tanner, D Ward

During coronary angiography knotting of a coronary catheter is a recognised complication. It commonly occurs through excessive manipulation of a catheter in an attempt to engage the right coronary artery. Although simple manoeuvres of the catheter can often result in resolution of a kink, tighter knots may not be amenable to such measures. There is, however, little published material regarding its best management. We present five cases of cardiac catheterisation complicated by catheter knotting and present a novel percutaneous technique for their reduction.

CASES

Case 1
A 67 year old woman was admitted for percutaneous coronary intervention of a right coronary vein graft. The vein graft was extensively thrombosed and attempts were made to remove the thrombus with the Excisor 1.5 mm (Microvena, Minnesota, USA). After removal of the Excisor, the guide catheter became dislodged and attempts to reposition it resulted in kinking of the catheter. A resulting knot formed in the right common iliac artery.

Case 2
A 50 year old woman was admitted for coronary angiography. After considerable torquing of the Judkins right coronary catheter (JR4) (Cordis Europa, Roden, Holland) the right coronary artery was engaged and standard views acquired. On withdrawal of the JR4 resistance was encountered and a knot formed in the lower abdominal aorta.

Case 3
A 72 year old woman was admitted for left heart catheterisation. Her aorta and common iliac vessels were noted to be very tortuous. On attempting intubation of the right coronary artery a knot was tied in the right common iliac artery.

Case 4
A 68 year old man was admitted for left heart catheterisation. Considerable torquing was used to aid intubation of the right coronary artery. On withdrawal of the catheter a knot was tied in the right common iliac artery.

Case 5
A 63 year old man was admitted for left heart catheterisation. On withdrawal of the JR4 it became knotted in the right common iliac artery.

TECHNIQUE OF KNOT REDUCTION

In the above cases the same technique was used when standard attempts (see above) failed to resolve the knot (fig 1). Each rescue procedure was performed by the same (consultant) operator.

Arterial access was gained through the left femoral artery. An 8 French introducer sheath (Arrow, 24 cm) (Arrow Deutschland, Erding, Germany) was used. Through the introducer a pair of “grabbing” forceps was passed. The grabbing forceps are made by Olympus-Keymed (Southend, UK) for endoscopic purposes (catalogue number FG-4L-1). The jaws extend about 1 cm beyond the end of the shaft. The ends of the jaws interlock with a W shaped jaws mechanism, thereby providing traction up to about 1.5 kg. At a site above the knot in the descending aorta the coronary catheter was snared and thus fixed in position (fig 2). This permitted effective manipulation of the coronary catheter from its proximal end allowing knot reduction. In all cases the knot was clockwise. In four cases...
simple anticlockwise rotation was sufficient to unravel the
knot. In one case (case 1) additional longitudinal manipu-
lation was needed. This was achieved by advancing the grab-
ber device superiorly. In all cases this procedure allowed
uncomplicated removal of the knotted catheter (fig 3).

DISCUSSION
Knotting of the right coronary catheter during left heart cath-
terisation is a recognised complication and has been reported
previously.\(^1\) Knotting is usually the result of excessive torqu-
ing of the right coronary catheter, especially in a tortuous
aorta.\(^2\) Applying clockwise or anticlockwise rotation or gentle
traction can result in reduction of simple knots. However,
more complex knots may rotate in the direction of torque
adding further problems. Sometimes a guidewire can be
advanced to the knot and with gentle traction of the catheter
the wire may pass through and open the knot.\(^3\) Unfortunately,
if a knot is too tight the guidewire will not be able to pass
through the knot and this technique will be unsuccessful.
There is also a risk of perforating the catheter if excessive
force is used. A single case report has suggested that a longer intro-
ducer sheath can facilitate manipulation of a kinked
catheter.\(^4\)

Chinician and colleagues\(^5\) described a technique that
involves the introduction of a second catheter through the
contralateral femoral artery. The second catheter is passed
alongside the knotted catheter and directed through the loop
of the knot. The knot is then pulled back to the bifurcation of
the aorta and moved gently to and fro enabling knot
reduction. A further technique with a second catheter has also
been described.\(^6\)

Unfortunately, the above techniques are all limited by their
dependence on significant knot laxity and would therefore not
be successful in the case of tighter knots. This is a great
advantage of the technique that we have described. By fixing
the knotted catheter distal to the knot this technique is not
dependent on either being able to pass a guidewire through
the knot or passing another catheter through its loop. In these
cases we used the W grabber device, which has the advantage
of being open—that is, it can fixate the catheter from the side.
Closed snares would require passing the device over the free
end of the catheter. Biopsy forceps are too small.

In the case of tight catheter knots that do not respond to
standard manoeuvres we would recommend the use of this
simple and effective technique, obviating the need for surgical
intervention.

Authors’ affiliations
M A Tanner, D Ward, Kingston Hospital NHS Trust,
Kingston-upon-Thames, Surrey, UK

Correspondence to: Dr Mark Tanner, Kingston Hospital NHS Trust,
Galsworthy Road, Kingston-upon-Thames, Surrey, KT2 7QB, UK;
marktanner@lycos.co.uk

Accepted 21 May 2003

REFERENCES
1 Thomas HA Sievers RE. Non-surgical reduction of arterial knots. Am J
2 Patel R, Kumar S, Hameedi S. Nonsurgical removal of a kinked right
3 Bierman HR. On the intravascular knotting of catheters. Vasc Surg
“headhunter” catheter and its successful removal. Radiology
1972; 109:469–70.
Percutaneous technique for the reduction of knotted coronary catheters

M A Tanner and D Ward

Heart 2003 89: 1132-1133
doi: 10.1136/heart.89.10.1132