During recent years, numerous recommendations and practice guidelines on the subject of secondary prevention of coronary heart disease have been produced throughout Europe. Congresses, educational meetings, and lectures have been held with the purpose of facilitating the implementation of evidence based clinical practice. Furthermore, printed educational materials including reviews and clinical guidelines have been provided to all physicians concerned. Despite all this effort, the gap is still wide between what is achieved in clinical practice, and what could be achieved according to scientific evidence based goals for secondary prevention in patients with coronary heart disease. The reason for this is probably that there are several barriers and complexities between the guidelines and a behavioural change in real clinical practice.

The means of changing this lies in the choice of educational method, rather than producing more scientific evidence. A recent comment from a European perspective on guidelines and global risk states that “The real task facing cardiovascular medicine is implementation of these recommendations into clinical practice”.

Thus, the question is: How to perform this? Which physicians are the key target population? Cardiologists, internists, generalists and, or general practitioners? Perhaps the patients? Which implementation methods should be used? Are these methods evidence based? How should the results be evaluated?

PARTICIPATION BY CASE METHOD LEARNING

A recent Swedish study using the case method learning technique—that is, a participatory learning method—holds promise and shows significant results in secondary prevention of patients with coronary heart disease, even at the patient level in primary care.

The reason why we focused on education for general practitioners, and not for specialists, is that the main cohort of patients with stable coronary heart disease, at least in Sweden, is taken care of by generalists. However, coronary heart disease patients represent only a minority of the patients treated at those generalist practices, as opposed to being a majority at a specialist clinic. Generalists are therefore faced with the difficult task of ensuring that they are updated on scientific evidence related to all the different diseases of their patients. Furthermore, the psychology of a decision has been shown to be influenced by its framing. Clinical decision making is not an entirely logical and deductive process; experience, context, and familiarity with the subject and/or the patient are other important components. The framing of the decision in a well structured clinical trial differs a lot from the unstructured framing of the decisions in clinical practice. Especially in primary care decisions can have complex medical and psychosocial dimensions. Thus, the design of an educational method must be chosen with awareness of the multiple complexities in the daily work of a general practitioner. The method has to provide skills in a broad perspective. This includes training the skills regarding the recognition of a patient’s problem, the formulation of a structured question, the capability to search and critically scrutinise relevant patient oriented evidence, and to integrate this evidence into the frame of the particular decision. The key to successful implementation of new evidence, especially in primary care, would therefore be to use an educational method focusing on how and when to use which evidence in the local context of the physicians, and to facilitate the process of local consensus building.

In the Swedish study we selected an educational method including participation, interaction, recurrence, and a locally well known facilitator. The design of this participatory learning method was based on the case method learning technique. This method, using participatory learning in recurrent seminars, was then compared to the traditional way to implement practice guidelines on secondary prevention in coronary heart disease. The seminars begin with the presentation of a case. A case is a description of a defined critical situation requiring a clinical decision from a defined general practitioner. It could be an authentic patient case, or a defined critical situation,
which addresses aspects of secondary prevention in daily clinical practice. A locally well known cardiologist together with 4–7 general practitioners participated at each seminar. The interactive dialogue starts with the evidence, followed by a discussion on the context—for example, working conditions, family situation, lifestyle, economical constraints, and social and cultural settings of both the patient and the physician. However, the most important components of the decision process are believed to be of an abstract nature and include values, attitudes, beliefs, emotions, motivation, knowledge, ethical aspects, and communicative capability of both the patient and the physician. Important components affecting the decision, and the final treatment result, are also the physician’s sense of professional coherence, and the patient’s sense of coherence as a patient. Subsequently, urgency and timing—that is, when—and practical aspects—that is, how—are discussed and analysed. The discussion will end in a decision. Figure 1 shows the schematic cause–effect diagram from the Swedish study illustrating the concrete and abstract parts of the clinical decision process.

Educational intervention studies with patient related end points are scarce. The reasons for this fact are manifold, spanning from potential problems with confounding factors to the lack of reliable objective outcome measures. Evaluations of educational methods may show an increase in intermediate end points, such as perceived learning and positive reactions. In our study the effect of the educational methods was also evaluated at the patient level. The patients treated by general practitioners participating in the case method learning sessions were found to have significantly reduced lipid levels, as compared to the patients treated by general practitioners participating in the control group. This participatory learning method was also effective as assessed by time spent at the seminars. At each primary health care centre a one hour seminar was held three to four times during a two year period.

TOWARDS EVIDENCE BASED CONTINUOUS MEDICAL EDUCATION METHODS IN CARDIOVASCULAR PATIENT CARE

The main aim of continuous medical education is to improve professional practice.

Coronary heart disease is a major cause of morbidity and mortality. The impact on the health care system is thus significant. During the last decade, starting with the results from the 4S-study, firm scientific evidence concerning the efficacy of lipid lowering in patients with coronary heart disease has repeatedly been presented.

The discrepancy between the amount of time and money spent on clinical pharmacological trials in selected groups of patients, and the resources that are spent on collaborative population based cohort trials (interventions including both clinical treatment and process), is wide. The same applies to the numerous educational meetings, congresses, and plethora of written journals and textbooks presented to physicians, as compared to research evaluating effective methods to train professionals in assessing the clinical usefulness of this information in daily clinical decision making.

A recent Cochrane Collaboration evaluation states: “Didactic sessions alone are unlikely to change professional practice. On the contrary interactive workshops are at least in some cases shown to alter practice.” Important ingredients in the most effective educational methods are shown to be participation, interaction, recurrence, and facilitators, rather than lecturers. In spite of this, the most common continuing medical education activities aiming to improve professional practice in cardiovascular disease are still lectures, meetings, and printed educational materials. One reason for the lack of impact on clinical practice of attending lectures and reading printed materials is the absence of active participation and interaction.

A recent paper concerning the need for change in undergraduate medical training states: “The focus of health care has shifted from episodic care of individuals in hospitals to promotion of health in the community, and from paternalism and anecdotal care to negotiated management based on evidence of effectiveness and safety.” This paradigm shift should of course have implications also for the delivery of continuous medical education methods.

Figure 1 Cause–effect diagram illustrating the clinical decision making process integrating scientific evidence (what) with the concrete and abstract components of clinical practice.

Evidence based medicine in daily clinical practice: key problems

What?

► Which is the appropriate evidence in this situation?
► Which evidence is patient oriented evidence that matters?

How?

► How to improve professionals’ decision analysis, synthesis, communication, process logistics, timing, and prioritising in daily clinical practice?
► How to integrate those skills with skills to continuously manage to identify new patient oriented scientific evidence that matters?
To approach the goal of continuous medical education—improvement in health care delivery—the use of effective evidence based educational methods are necessary. Educational methods have to evolve from didactic lectures to active educational methods that have been shown to have the potential for changing professional practice, such as participatory learning by the use of a case method learning technique, for example.

To promote cardiovascular health in the community, it would probably be wise for the European and national societies to focus on all of the following areas of continuous learning, and also to evaluate the results continuously.

Self directed learning

An effective continual professional development of physicians necessarily includes a self directed curriculum, with learning, reflection, and change of behaviour. Physicians today, at least in Sweden, are often short of time for both self directed learning and reflection.

Participatory learning

Continuous professional development also includes learning from others. The word participation stands for “the action or state of taking part with others in an activity”. The fundamental basis of all participatory learning methods is that “learners” are active participants instead of passive listeners or readers. There are different means of participation in order to improve professional practice. A schematic illustration of participatory learning is presented in fig 2.

- **Participation in research**: Participation in collaborative population based cohort trials, incorporating the context of clinical practice—for example, the GISSI-trials.
- **Participation in organisational development**: To take part in work with national quality assurance registers or reviews—for example, the Register of Information and Knowledge about Swedish Heart Intensive care Admissions (RIKS-HIA). This register gives opportunities for the participants to learn from the feedback of results regarding their own actual clinical practice in the context of national results. Information from this register has also stimulated several cohort studies on actual clinical practice in Sweden.
- **Participation in interactive education**: To take part together with others in recurrent participatory seminars, workshops or other continual medical education activities. Two well established examples are training in cardiac pulmonary resuscitation (CPR) and advanced cardiac life support (ACLS). Methods focusing on how to merge the scientific evidence into the context and content of the daily clinical decision process of the participants can also be performed, as exemplified by using the case method learning technique. These intellectual dialogues give an opportunity to reflect on clinical performance together with other professionals who have different perspectives and experiences. The tutor acts as an opinion leader and facilitator and not as a lecturer.

CONCLUSIONS

The art of medicine requires multidimensional capabilities including knowledge, skills, ethics, communication, curiosity, and empathy. New scientific evidence and guidelines should be mandatory prerequisites, but they lack sufficient power to alter professional practice. Complementary evidence based educational/implementation techniques are needed. To make use of differences between people, and frictions between old and new knowledge, as well as to include the local context, are all powerful aids aiming at changing of clinical practice. Furthermore, the demand on the clinical guidelines to be evidence based should surely be extended to the methods of implementation and continuous medical education. Participatory learning methods—including intellectual interaction between professionals—aiming at integration of scientific evidence, within the context and content of the concrete clinical decision process frame, would in my opinion be an effective part of future continuous medical education.

In addition, it increases the joy of learning!

REFERENCES

4. A qualitative study which identifies barriers to be overcome between primary and secondary care, in order to shape the practice and decision making processes in primary care.
7. Significant effects at patient level are shown in this educational randomised controlled trial. The pedagogical method includes participation, interaction, recurrence, and a locally well known facilitator.
An excellent review regarding evaluation of educational research. The article describes the complexity of the design and evaluation subject, and the need for evidence base and meaningful outcome measures.

An excellent overview of the evidence base for different continuous medical education methods.

Participatory learning: a Swedish perspective

Anna Kiessling

Heart 2004 90: 113-116
doi: 10.1136/heart.90.1.113

Updated information and services can be found at:
http://heart.bmj.com/content/90/1/113

These include:

References
This article cites 20 articles, 6 of which you can access for free at:
http://heart.bmj.com/content/90/1/113#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Drugs: cardiovascular system (8842)
Education in Heart (527)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/